
SIMOTION SIMOTION SCOUT Communication

Foreword

Introduction
 1

Overview of the
communication functions and
services

2

PROFIdrive
 3

PROFIBUS
 4

Ethernet introduction
(TCP/IP and UDP
connections)

5

PROFINET IO
 6

Routing - communication
across network boundaries

 7

SIMOTION IT
 8

SIMOTION

SIMOTION SCOUT
Communication

System Manual

08/2008

Safety Guidelines Safety Guidelines
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage
Note the following:

WARNING
This device may only be used for the applications described in the catalog or the technical description and only
in connection with devices or components from other manufacturers which have been approved or
recommended by Siemens. Correct, reliable operation of the product requires proper transport, storage,
positioning and assembly as well as careful operation and maintenance.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90327 NÜRNBERG
GERMANY

Copyright © Siemens AG 2008.
Technical data subject to change

Communication
System Manual, 08/2008 3

Foreword

Foreword

Content
This document is part of the System and Function Descriptions documentation package.

Scope of validity
This manual is valid for SIMOTION SCOUT V4.1:
● SIMOTION SCOUT V4.1 (engineering system for the SIMOTION product range),

Chapters in this manual
This manual describes the communications possibilities for SIMOTION systems.
● Communications functions and services overview

General information about the communications possibilities provided by SIMOTION.
● PROFIdrive

Description of the PROFIdrive profile.
● PROFIBUS

Information about the DPV1 communication, and the setup and programming of the
communication between SIMOTION and SIMATIC devices.

● Ethernet introduction (TCP/IP and UDP connections)
Information about the the setup and programming of the Ethernet communication
between SIMOTION and SIMATIC devices.

● PROFINET IO
Information about configuring PROFINET with SIMOTION

● Routing - communication across network boundaries
General information about routing

● SIMOTION IT
General information about the IT and Web functions provided by SIMOTION.

● Index
Keyword index for locating information

Foreword

 Communication
4 System Manual, 08/2008

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in a separate list of references.
This documentation is included as electronic documentation with the supplied SIMOTION
SCOUT.
The SIMOTION documentation consists of 9 documentation packages containing
approximately 80 SIMOTION documents and documents on related systems (e.g.
SINAMICS).
The following documentation packages are available for SIMOTION V4.1 SP2:
● SIMOTION Engineering System
● SIMOTION System and Function Descriptions
● SIMOTION Diagnostics
● SIMOTION Programming
● SIMOTION Programming - References
● SIMOTION C
● SIMOTION P350
● SIMOTION D4xx
● SIMOTION Supplementary Documentation

Hotline and Internet addresses

Technical support
If you have any technical questions, please contact our hotline:

 Europe / Africa
Phone +49 180 5050 222 (subject to charge)
Fax +49 180 5050 223
Internet http://www.siemens.com/automation/support-request

 Americas
Phone +1 423 262 2522
Fax +1 423 262 2200
E-mail mailto:techsupport.sea@siemens.com

 Asia / Pacific
Phone +86 1064 719 990
Fax +86 1064 747 474
E-mail mailto:adsupport.asia@siemens.com

 Foreword

Communication
System Manual, 08/2008 5

 Note
Country-specific telephone numbers for technical support are provided under the following
Internet address:
http://www.siemens.com/automation/service&support
Calls are subject to charge, e.g. 0.14 €/min. on the German landline network. Tariffs of other
phone companies may differ.

Questions about this documentation
If you have any questions (suggestions, corrections) regarding this documentation, please
fax or e-mail us at:

Fax +49 9131- 98 63315
E-mail mailto:docu.motioncontrol@siemens.com

Siemens Internet address
The latest information about SIMOTION products, product support, and FAQs can be found
on the Internet at:
● General information:

– http://www.siemens.de/simotion (German)
– http://www.siemens.com/simotion (international)

● Product support:
– http://support.automation.siemens.com/WW/view/en/10805436

Additional support
We also offer introductory courses to help you familiarize yourself with SIMOTION.
Please contact your regional training center or our main training center at D-90027
Nuremberg, phone +49 (911) 895 3202.
Information about training courses on offer can be found at:
www.sitrain.com

Communication
System Manual, 08/2008 7

Table of contents
 Foreword ... 3
1 Introduction.. 13

1.1 The communications subject in the SIMOTION documentation..13
2 Overview of the communication functions and services... 15

2.1 Network options ...15
2.1.1 Introduction ..15
2.1.2 PROFINET...16
2.1.3 Industrial Ethernet..16
2.1.4 PROFIBUS...17
2.1.5 MPI (Multi-Point Interface) ...17
2.1.6 Point-to-point communication (PtP) ...18
2.2 Communications services (or network functions) ..18
2.2.1 Introduction ..18
2.2.2 PG/OP communication services ..19
2.2.3 S7 communication services ...19
2.2.4 S7 basic communication services..20
2.2.5 "Global data" communication service ..20
2.2.6 PROFINET communication services ...21
2.2.7 Industrial Ethernet communication services ..21
2.2.8 PROFIBUS communication services ...22
2.3 Additional services for the exchange of information ..23

3 PROFIdrive.. 25
3.1 Introduction ..25
3.2 Why profiles? ...25
3.3 Segmentation in application classes..26
3.4 PROFIdrive-specific data types ...28

4 PROFIBUS .. 33
4.1 Cyclic communication ..33
4.1.1 Cyclic communication (overview)...33
4.2 DP V1 acyclic communication..34
4.2.1 Acyclic communication to slaves ...34
4.2.2 Reading and writing data with DP V1 ..34
4.2.3 Data set 47...37
4.2.4 Error assessment...39
4.2.5 Additional information for the parameters of a PROFIdrive drive ..39
4.2.6 Structure of a read/write request..40
4.2.7 System commands in SIMOTION..41
4.2.7.1 _writeRecord/_readRecord SIMOTION system commands ..41
4.2.7.2 _writeDrive.../_readDrive... SIMOTION system commands...42
4.2.7.3 Comparison of the system commands ..43

Table of contents

 Communication
8 System Manual, 08/2008

4.2.7.4 Deleting _readDrive and _writeDrive jobs ... 44
4.2.8 Rules for using _readRecord and _writeRecord ... 45
4.2.8.1 Rule 1 - the job has its own job reference... 45
4.2.8.2 Rule 2 - system functions for asynchronous programming... 45
4.2.8.3 Rule 3 - read/write data record per PROFIDrive drive device .. 47
4.2.8.4 Rule 4 - the last call wins for SIMOTION .. 47
4.2.8.5 Rule 5 - a maximum of eight concurrent calls is possible in SIMOTION 49
4.2.9 Rules for SIMOTION _writeDrive.../_readDrive... commands... 51
4.2.9.1 Scope for the rules .. 51
4.2.9.2 Rule 6 - repeated call of system function for asynchronous programming................................. 52
4.2.9.3 Rule 7 - multiple concurrent calls per target device.. 53
4.2.9.4 Rule 8 - release the interlocking after the complete processing of a job 54
4.2.9.5 Rule 9 - canceling jobs for an asynchronous call ... 56
4.2.9.6 Rule 10 - management of sixteen jobs ... 59
4.2.9.7 Rule 11 - parallel jobs for different drive devices.. 59
4.2.10 Special features .. 61
4.2.10.1 Rule 12 - data buffering of up to 64 drive objects ... 61
4.2.10.2 Rule 13 - a mix of system functions can be used ... 61
4.2.10.3 Rule 14 - interlocking for the mixed use of commands... 63
4.2.11 Program examples .. 64
4.2.11.1 Programming example .. 64
4.3 Communication with SIMATIC S7... 67
4.3.1 Possible communication connections between SIMOTION and SIMATIC................................. 67
4.3.2 SIMOTION as DP slave on a SIMATIC S7 ... 68
4.3.2.1 Introduction ... 68
4.3.2.2 Connecting SIMOTION as DP slave with the aid of a GSD file to a SIMATIC S7...................... 68
4.3.2.3 Connecting SIMOTION as i-slave to a SIMATIC S7... 69
4.3.3 SIMATIC S7 as DP slave on a SIMOTION... 71
4.3.3.1 Introduction ... 71
4.3.3.2 Connecting SIMATIC as DP slave with the aid of a GSD file to a SIMOTION device................ 71
4.3.3.3 Connecting SIMATIC S7 CPU as i-slave to a SIMOTION device... 72
4.3.4 PROFIBUS master-master connection between SIMATIC and SIMOTION............................... 74
4.3.4.1 Introduction ... 74
4.3.4.2 SIMATIC S7 system functions for a PROFIBUS connection .. 75

5 Ethernet introduction (TCP/IP and UDP connections) ... 79
5.1 Introduction ... 79
5.2 Configuring Ethernet subnets with SIMOTION ... 79
5.2.1 Features of the Ethernet subnets.. 79
5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or

UDP... 80
5.3.1 Introduction ... 80
5.3.2 SIMOTION TCP/IP functions - modeling .. 80
5.3.3 SIMOTION TCP/IP functions - description.. 82
5.3.4 SIMOTION UDP functions - modeling .. 82
5.3.5 SIMATIC functions .. 84
5.3.6 General information... 86
5.4 Preparations for the configuration of the connection between SIMOTION and SIMATIC

S7 .. 87
5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a

SIMOTION device ... 88
5.5.1 Configuring a communication connection between a SIMATIC with Ethernet CP and a

SIMOTION device ... 88

 Table of contents

Communication
System Manual, 08/2008 9

5.5.2 TCP/IP connection ...89
5.5.3 UDP connection ...92
5.6 Creating a communication connection between a SIMATIC CPU with integrated Ethernet

interface and a SIMOTION device...94
5.7 Using the functions and function blocks in the user program..95
5.7.1 Configuration flowchart and general information ...95
5.7.2 S7 and SIMOTION functions for a TCP/IP connection when using an S7 station with

Ethernet CP..99
5.7.2.1 Introduction ..99
5.7.2.2 S7 functions ...99
5.7.2.3 SIMOTION functions..100
5.7.3 S7 and SIMOTION functions for a UDP connection when using an S7 station with

Ethernet CP..104
5.7.3.1 Introduction ..104
5.7.3.2 S7 functions ...104
5.7.3.3 SIMOTION functions..104
5.7.4 S7 function blocks and SIMOTION functions for a TCP/IP connection when using an S7

station with integrated Ethernet interface ..105
5.7.4.1 Introduction ..105
5.7.4.2 S7 function blocks..105
5.7.4.3 SIMOTION functions..110
5.7.5 Processing of TCP/IP data packets in the SIMOTION user program..110
5.8 Details of the SIMOTION TCP/IP system functions...113
5.8.1 _tcpOpenServer function ...113
5.8.2 _tcpOpenClient function...113
5.8.3 _tcpReceive function..114
5.8.4 _tcpSend function ..114
5.8.5 _tcpCloseConnection function ...115
5.8.6 _tcpCloseServer function ...115
5.9 Details of the SIMOTION UDP system functions...115
5.9.1 Function _udpSend ..115
5.9.2 Function _udpReceive ...116

6 PROFINET IO.. 119
6.1 PROFINET IO overview...119
6.1.1 PROFINET IO ..119
6.1.2 Application model...120
6.1.3 IO controller..120
6.1.4 IO device ..121
6.1.5 Sync domain ..121
6.1.6 iDevice ...121
6.1.7 Addressing of PROFINET IO devices..122
6.1.8 RT classes ...122
6.1.8.1 RT classes for PROFINET IO..122
6.1.8.2 PROFINET IO with RT...126
6.1.8.3 PROFINET IO with IRT - Overview..127
6.1.8.4 PROFINET IO with IRT (High Flexibility) ...128
6.1.8.5 PROFINET IO with IRT (High Performance) ...129
6.1.9 Topology ..130
6.1.10 Isochronous applications with PROFINET...133
6.1.11 Cycle clock scaling...135
6.1.11.1 Cycle clock scaling with PROFINET IO on SIMOTION devices..135
6.1.11.2 Cycle clock scaling for IO accesses ..136

Table of contents

 Communication
10 System Manual, 08/2008

6.1.11.3 Bus cycle clocks that can be adjusted for cycle clock scaling to SIMOTION devices.............. 137
6.1.12 Connection between sync domain and IO systems.. 137
6.1.13 Redundant sync master .. 138
6.1.14 Quantity structures .. 139
6.1.15 Acyclic communication via PROFINET... 140
6.2 Specific properties of PROFINET IO with SIMOTION .. 141
6.2.1 Introduction ... 141
6.3 Configuring PROFINET IO with SIMOTION ... 142
6.3.1 New to SIMOTION V4.1.2... 142
6.3.2 Proceed as follows for configuring PROFINET IO.. 142
6.3.3 Adding and configuring a CBE30-PROFINET board .. 143
6.3.4 Inserting and configuring P350 ... 145
6.3.5 Inserting and configuring the C240 ... 147
6.3.6 Creating a sync domain .. 149
6.3.7 Configuring a topology .. 151
6.3.7.1 Topology.. 151
6.3.7.2 Interconnecting ports via the topology editor .. 152
6.3.7.3 Interconnecting ports via object properties ... 154
6.3.7.4 Topology editor (graphical view) ... 155
6.3.8 Defining send clock and refresh times .. 156
6.3.9 Creating an IO device ... 157
6.3.10 Inserting and configuring the SINAMICS S120... 159
6.3.11 Assigning device names and IP addresses to IO devices .. 161
6.4 Configuring direct data exchange between IO controllers .. 166
6.4.1 Introduction ... 166
6.4.2 Configuring the sender.. 167
6.4.3 Configuring the receiver .. 168
6.5 Configuring the iDevice ... 169
6.5.1 PROFINET iDevice ... 169
6.5.2 Configuring a PROFINET iDevice... 170
6.5.3 Creating a substitute iDevice .. 173
6.5.4 Inserting an iDevice in the higher-level IO controller .. 175
6.6 Loading the communication configuration .. 179
6.6.1 Loading the PROFINET IO configuration.. 179
6.7 Data exchange between SIMATIC and SIMOTION via PROFINET... 179
6.7.1 Data exchange through the use of iDevices ... 179
6.7.2 PN-PN coupler .. 180
6.7.3 Communication using standard protocols... 181
6.8 Diagnostic and alarm behavior ... 182
6.8.1 PROFINET IO alarm and diagnostic messages to SIMOTION .. 182
6.8.2 Diagnostics model... 183
6.8.3 Alarms on the IO controller ... 185
6.8.4 Alarms from the IO device to the IO controller.. 186
6.8.5 Alarms for direct data exchange between IO controllers .. 187
6.8.6 Alarms for SINAMICS S120 drives ... 188
6.8.7 System functions for the diagnostics for PROFINET or PROFIBUS .. 189
6.8.8 PROFINET device diagnosis in STEP 7 ... 190

7 Routing - communication across network boundaries.. 191
7.1 What does routing mean?... 191
7.2 Configuration of S7 routing ... 192

 Table of contents

Communication
System Manual, 08/2008 11

7.3 Routing for SIMOTION...192
7.4 Routing for SIMOTION D with inserted PROFINET CBE30 board..194
7.5 Routing for SIMOTION D to the SINAMICS integrated ...196
7.6 Routing for SIMOTION P350 ...197

8 SIMOTION IT... 199
8.1 SIMOTION IT - overview..199
8.2 Web access to SIMOTION...201
8.3 SIMOTION IT DIAG ...202
8.4 SIMOTION IT OPC XML DA..205
8.5 FTP data transfer ...207

 Index.. 209

Communication
System Manual, 08/2008 13

Introduction 1
1.1 The communications subject in the SIMOTION documentation

Overview
You can find information on the subject of communication in the individual Manuals, in the
Programming Manuals and in this Communication Manual.

Communication manual
This communication manual provides, in particular, information that is important for the
communication of SIMOTION devices with devices that are not part of the SIMOTION family,
especially SIMATIC devices.
This manual contains descriptions of the required configuration steps that must be performed
on both communication partners in order to obtain an error-free, functioning communication
relationship.
Therefore, this manual deals very intensively with the settings and the programming of the
SIMATIC S7 stations as communication partners of the SIMOTION devices.

Product manuals and programming manuals
The product manuals deal with the subject of communication from the point of view of the
devices themselves, i.e. with respect to the electrical properties of the available interfaces as
well as the setting options with the SIMOTION SCOUT engineering system.
You will also find further information in the manuals entitled Modular Machine Concepts and
Base Functions, which are part of the SIMOTION documentation package.
There is no information here how the partner stations are set.

Communication
System Manual, 08/2008 15

Overview of the communication functions and
services 2
2.1 Network options

2.1.1 Introduction
As an integral part of "Totally Integrated Automation" (TIA), the SIMOTION and SIMATIC
network solutions provide the necessary flexibility and performance characteristic for the
communication requirements of your application, irrespective of how simple or complex it is.

 Note
This section provides a general description of the communication functions and services
included in Siemens' automation technology. This does not necessarily imply that all
functions mentioned also are available for SIMOTION. You will find details concerning the
functions supported by SIMOTION in chapters 4 - 8.

SIMOTION and SIMATIC networks for all applications
The SIMOTION products support a variety of network options. With these network solutions,
you can combine the SIMOTION devices in accordance with the requirements of your
application.
For further optimization of the network solutions, SIMOTION products provide integrated
communication services and functions to extend the performance capability of the network
protocol.

Overview of the communication functions and services
2.1 Network options

 Communication
16 System Manual, 08/2008

2.1.2 PROFINET

Overview
PROFINET is based on the open Industrial Ethernet standard for industrial automation for
company-wide communication and extends the capability for data exchange of your
automation components through to the office environment, so that your automation
components, even the distributed field devices and drives, can be connected to your local
area network (LAN).
Because PROFINET connects all levels of your organization – from the field devices through
to the management systems – you can perform the plant-wide engineering using normal IT
standards. As for all solutions based on Industrial Ethernet, PROFINET supports electrical,
optical and wireless networks.
As PROFINET is based on Industrial Ethernet and not implemented as a derived form of
"PROFIBUS for Ethernet", PROFINET can utilize the previously installed Ethernet-
compatible devices. Even if PROFINET is not a master/slave system, the PROFINET IO and
PROFINET CBA communication services provide the functionality required by automation
systems:
● With PROFINET IO, you can connect distributed field devices (e.g. digital or analog

signal modules) and drives directly to an Industrial Ethernet subnet.
● PROFINET CBA (Component-Based Automation) supports modular solutions for

machine and plant construction. You define your automation system as autonomous
components, whereby each component consists of independent, self-contained tasks.

Both communication services provide real-time functionality to make PROFINET a real-time
implementation. PROFINET also enables the simultaneous existence of the real-time
communication of your automation process and your other IT communication, at the same
time in the same network, without the real-time behavior of your automation system being
impaired.
The PROFIsafe profile communicates with the fail-safe devices via the PROFINET subnet
for further support of fail-safe or "safety-relevant" applications.

2.1.3 Industrial Ethernet

Overview
As Industrial Ethernet provides a communication network for the connection of command
levels and cell levels, you can extend the data exchange capability of your automation
components into the office environment with Industrial Ethernet.
Industrial Ethernet is based on the standards IEEE 802.3 and IEEE 802.3u for
communication between computers and automation systems and enables your system to
exchange large data volumes over long distances.

 Overview of the communication functions and services
 2.1 Network options

Communication
System Manual, 08/2008 17

2.1.4 PROFIBUS

Overview
PROFIBUS is based on the standards IEC 61158 and EN 50170 and provides a solution
with open field bus for the complete production and process automation. PROFIBUS
provides fast, reliable data exchange and integrated diagnostic functions. PROFIBUS
supports manufacturer-independent solutions with the largest third-party manufacturer
support worldwide. A variety of transmission media can be used for your PROFIBUS subnet:
electrical, optical and wireless.
PROFIBUS provides the following communication services:
● PROFIBUS DP (Distributed Peripherals) is a communication protocol that is especially

suitable for production automation.
PROFIBUS DP provides a fast, cyclic and deterministic exchange of process data
between a bus DP master and the assigned DP slave devices. PROFIBUS DP supports
isochronous communication. The synchronized execution cycles ensure that the data is
transmitted at consistently equidistant time intervals.

● PROFIBUS PA (Process Automation) expands PROFIBUS DP to provide intrinsically
safe data and power transmission according to the IEC 61158-2 standard.

● PROFIBUS FMS (Fieldbus Message Specification) is for communication on the cell level,
where the controllers communicate with one another. Automation systems from different
manufacturers can communicate with one another by means of PROFIBUS FMS.

● PROFIBUS FDL (Fieldbus Data Link) has been optimized for the transmission of
medium-sized data volumes to support error-free data transmission on the PROFIBUS
subnet.

In addition, PROFIBUS uses profiles to provide communication options for the needs of
specific applications, such as PROFIdrive (for the motion control) or PROFIsafe (for fail-safe
or "safety-relevant" applications).

2.1.5 MPI (Multi-Point Interface)

Overview
MPIs are integrated interfaces for SIMOTION and SIMATIC products (SIMOTION devices,
SIMATIC S7 devices, SIMATIC HMI as well as SIMATIC PC and PG).
MPI provides an interface for PG/OP communication. In addition, MPI provides simple
networking capability using the following services: communication via global data (GD), S7
communication and S7 basic communication.
The electric transmission medium for MPI uses the RS 485 standard, which is also used by
PROFIBUS.

Overview of the communication functions and services
2.2 Communications services (or network functions)

 Communication
18 System Manual, 08/2008

2.1.6 Point-to-point communication (PtP)

Overview
SIMOTION devices can be programmed so that they exchange data with another controller
in the network. Even if the point-to-point communication is not considered as a subnet, the
point-to-point connection provides serial transmission (e.g. RS232 or RS485) of data
between two stations, e.g. with a SIMATIC controller or even with a third-party device that is
capable of communication.
CP modules (e.g. a CP340) or ET200 modules can be used for point-to-point communication
to read and write data between two controllers. Point-to-point communication thus
represents a powerful and cost-effective alternative to bus solutions, particularly when only a
few devices are connected to the SIMOTION device.
Point-to-point communication provides the following capabilities:
● Using standard procedures or loadable drivers to adapt to the protocol of the

communication partner
● Using ASCII characters to define a user-specific procedure
● Communication with other types of devices, such as operator panels, printers or card

readers

Additional references
You will find additional references concerning point-to-point communication in the
descriptions of the CP or ET200 modules.

2.2 Communications services (or network functions)

2.2.1 Introduction
SIMOTION and SIMATIC devices support a set of specific communication services, which
control the data packets that are transmitted via the physical networks. Each communication
service defines a set of functions and performance characteristics, e.g. the data to be
transferred, the devices to be controlled, the devices to be monitored and the programs to be
loaded.

Communication services of the SIMOTION and SIMATIC products
Communication services, also often referred to as network functions, are the software
components that utilize the physical hardware of the networks. Software interfaces (e.g. S7
system functions) in the end device (e.g. SIMOTION device, SIMATIC S7 device or PC)
provide access to the communication services. However, a software interface does not
necessarily have all of the communication functions for the communication service. Such a
service can be provided in the respective end system with different software interfaces.

 Overview of the communication functions and services
 2.2 Communications services (or network functions)

Communication
System Manual, 08/2008 19

2.2.2 PG/OP communication services

Overview
PG/OP services are the integrated communication functions with which SIMATIC and
SIMOTION automation systems communicate with a programming device (e.g. STEP 7) and
HMI devices. All SIMOTION and SIMATIC networks support the PG/OP communication
services.

2.2.3 S7 communication services

Overview
S7 communication services provide data exchange using communication system function
blocks (SFBs) and function blocks (FBs) for configured S7 connections.
All SIMOTION devices and SIMATIC S7 devices have integrated S7 communication services
that allow the user program in the controller to initiate the reading or writing of data. These
functions are independent of specific networks, allowing you to program S7 communication
via any network (MPI, PROFIBUS, PROFINET or Industrial Ethernet).
For transferring data between the controllers, you must configure a connection between both
controllers. The integrated communication functions are called up by the SFB/FB in the
application. You can transfer up to 64 KB of data between SIMOTION and SIMATIC S7
devices.
You can access data in the controller with your HMI device, programming device (PG) or PC
as the S7 communication functions are integrated in the operating system of the SIMOTION
devices and SIMATIC S7 devices. This type of peer-to-peer link does not require any
additional connection equipment. (However, if you configure a connection to one of these
devices, you can access the data via the symbolic names.)

 Note
SFBs may not be used with SIMOTION.

Overview of the communication functions and services
2.2 Communications services (or network functions)

 Communication
20 System Manual, 08/2008

2.2.4 S7 basic communication services

Overview
S7 basic communication services provide data exchange using communication system
functions (SFCs) for non-configured S7 connections. These SFCs (e.g. X_GET or X_PUT)
read or write the data to a SIMATIC controller, so that small data volumes can be transferred
via an MPI subnet to another S7 station (S7 controller, HMI or PC).
The SFCs for the S7 basic communication do not communicate with stations in other
subnets. You do not need to configure connections for the S7 basic communication. The
connections are established when the user program calls the SFC.

 Note
You can only use the S7 basic communication services via an MPI connection between
SIMATIC S7-300, S7-400 or C7-600 controllers.

2.2.5 "Global data" communication service

Overview
In addition to the other options for the network communication, you can configure a 'global
data' communication connection (GD) to provide cyclic data transmission between SIMATIC
controllers that are connected to an MPI network. The data exchange runs as part of the
normal process image exchange, as the global data communication is integrated in the
operating system of the SIMATIC controller.
As the global data communication is a process for transferring data, the receipt of the global
data is not acknowledged. A publisher (data source) sends the data to one or several
subscriber(s) (data sink) and subscribers receive the data. The publisher does not receive an
acknowledgement from the subscribers that they have received the transmitted data.

 Note
You can only use the global data communication via an MPI connection between SIMATIC
S7-300, S7-400 or C7-600 controllers.
GD communication does not require any special programming or program blocks in your
STEP 7 user program. The operating systems of the individual controllers process the global
data exchange. Using STEP 7, you configure a global data (GD) table with the source path
of the data to be transmitted to the subscribers. This GD table is downloaded with the
hardware configuration for both the publisher and the subscribers.
Global data is not available for SIMOTION.

 Overview of the communication functions and services
 2.2 Communications services (or network functions)

Communication
System Manual, 08/2008 21

2.2.6 PROFINET communication services

Overview
PROFINET provides the following communication services:
● You can connect I/O devices and drives via a Ethernet physics to the SIMOTION or

SIMATIC controller with the communication service PROFINET IO. The user program
executed in the controller can process the input and output data of the I/O devices with
PROFINET IO. You configure the addressing for PROFINET IO in STEP 7 or SIMOTION
SCOUT.

● With PROFINET CBA, you can define your automation system as autonomous subunits
or components. These components can be PROFINET IO, PROFIBUS DP or third-party
devices or subnets.

If you want to use the PROFINET CBA communication services for a component-based
solution, configure the SIMATIC controllers and the I/O devices in individual components in
STEP 7. Then configure the communication between the various components with SIMATIC
iMAP.
Both PROFINET IO and PROFINET CBA communication services provide the real-time
communication required by automation systems.

 Note
PROFINET CBA is only available for SIMATIC devices, but not yet for SIMOTION devices.

2.2.7 Industrial Ethernet communication services

Overview
Industrial Ethernet is based on the IEEE 802.3 and IEEE 802.3u standards and connects the
automation systems with your business system, so that you also have access to the data in
the office.
Industrial Ethernet provides the following communication services:
● The ISO transfer provides services for transmitting data via connections that support

error-free data transmission. The ISO transfer is only possible with STEP7.
● TCP/IP allows you to exchange contiguous data blocks between the controllers and

computers in PROFINET or Industrial Ethernet networks. With TCP/IP, the controller
transmits contiguous data blocks.

● ISO-on-TCP (RFC 1006) supports error-free data transmission. For SIMOTION only
when going though SCOUT ONLINE. If the communication is performed from the user
program, an RFC must be programmed.

● UDP (User Datagram Protocol) and UDP multi-cast provide simple data transmission
without acknowledgment. You can transmit contiguous data blocks from one station to
another, such as between a SIMOTION and SIMATIC controller, a PC or a third-party
system.

Overview of the communication functions and services
2.2 Communications services (or network functions)

 Communication
22 System Manual, 08/2008

● Information technology (IT) communication allows you to share data using standard
Ethernet protocols and services (such as FTP, HTTP and e-mail) via PROFINET or
Industrial Ethernet networks.

2.2.8 PROFIBUS communication services

Overview
PROFIBUS provides the following communication services:
● PROFIBUS DP (Distributed Peripherals) supports the transparent communication with the

distributed I/O. The SIMOTION/STEP 7 user program accesses the distributed I/O in the
same manner as it accesses the I/O on the central rack of the controller (or the PLC).
PROFIBUS DP enables the direct communication with the distributed I/O. PROFIBUS DP
complies with the EN 61158 and EN 50170 standards.

● PROFIBUS PA (Process Automation) facilitates the direct communication with process
automation (PA) instruments. This includes both cyclic access to I/O, typically with a PLC
master, as well as acyclic access to the potentially large set of device operating
parameters, typically with an engineering tool such as Process Device Manager (PDM).
PROFIBUS PA complies with the IEC 61158 standard.

● PROFIBUS FMS (Fieldbus Message Specifications) enables the transmission of
structured data (FMS variables). PROFIBUS FMS complies with the IEC 61784 standard.

● PROFIBUS FDL (Fieldbus Data Link) has been optimized for the transmission of
medium-sized data volumes to support error-free data transmission on the PROFIBUS
subnet. PROFIBUS FDL supports the SDA function (Send Data with Acknowledge).

 Note
SIMOTION devices only support the PROFIBUS DP communication service.
For fail-safe communication, SIMOTION and SIMATIC devices use the PROFIsafe profile
for PROFIBUS DP.
SIMOTION devices use the PROFIdrive profile for communication between SIMOTION
devices through to the connected drives.

Additional references
You can find a comparison of the SIMATIC S7 and SIMOTION system functions in the
2_FAQ directory on the Utilities & Applications CD.

 Overview of the communication functions and services
 2.3 Additional services for the exchange of information

Communication
System Manual, 08/2008 23

2.3 Additional services for the exchange of information
In addition to supporting the standard communication networks, SIMOTION and SIMATIC
also provide additional means for sharing information via networks.
Sharing data with other applications via OPC (OLE for Process Control)
OPC (OLE for Process Control) allows Windows applications to access process data,
making it easy to combine devices and applications produced by different manufacturers.
OPC not only provides an open, manufacturer-independent interface, but also an easy-to-
use client/server configuration for the standardized data exchange between applications
(e.g. HMI or office applications) that do not require a specific network or protocol.
The OPC server provides interfaces for connecting the OPC client applications. You
configure the client applications for access to data sources, e.g. addresses in the memory of
a PLC. Because several different OPC clients can access the same OPC server at the same
time, the same data sources can be used for any OPC-compliant application.
In addition to OPC servers, SIMATIC NET also provides applications for configuring and
testing OPC connections: Advanced PC Configuration (APC) and OPC Scout (used to test
and commission an OPC application or OPC server). You use these tools to connect
SIMOTION and SIMATIC S7 products to other OPC-compliant applications.
The SIMATIC NET OPC servers support the following communication services:
● PROFINET IO (by means of PROFINET or Industrial Ethernet subnet)
● PROFINET CBA (by means of PROFINET or Industrial Ethernet subnet)
● TCP/IP (by means of PROFINET or Industrial Ethernet subnet)
● PROFIBUS DP (by means of PROFIBUS subnet)
● PROFIBUS FMS (by means of PROFIBUS subnet)
● S7 communication
● S5compatible communication

Using information technology (IT) for sharing data in an office environment
SIMOTION and SIMATIC use standard IT tools (such as e-mail, HTTP Web server, FTP and
SNMP) with PROFINET and Industrial Ethernet networks to expand the data-sharing
capabilities into the office environment.
For SIMOTION devices, the corresponding functions are made available through SIMOTION
IT DIAG, see SIMOTION IT Ethernet-based HMI and Diagnostic Functions.

Communication
System Manual, 08/2008 25

PROFIdrive 3
3.1 Introduction

The PROFIdrive Profile
The PROFIdrive profile defines the device behavior and the access procedure to drive data
for electrical drives on PROFIBUS and on PROFINET, from simple frequency converters up
to high performance servo controllers.
You will the current version under www.profibus.com; Order No.: 3.172

3.2 Why profiles?
Profiles used in automation technology define certain characteristics and responses for
devices, device groups or whole systems which specify their main and unique properties.
Only devices with manufacturer-independent profiles can behave in exactly the same way on
a fieldbus and thus fully exploit the advantages of a fieldbus for the user.
Profiles are specifications defined by manufacturers and users for certain characteristics,
performance features and behaviors of devices and systems. They aim to ensure a certain
degree of interoperability of devices and systems on a bus which are part of the same
product family due to "profile-compliant" development.
Different types of profiles can be distinguished such as so-called application profiles (general
or specific) and system profiles.
● Application profiles mainly refer to devices, in this case drives, and contain an agreed

selection of bus communication methods as well as specific device applications.
● System profiles describe system classes and include the master functionality, program

interfaces and integration methods.

PROFIdrive
3.3 Segmentation in application classes

 Communication
26 System Manual, 08/2008

PROFIdrive
The PROFIdrive profile is a specific application profile. The PROFIdrive profile defines the
device behavior and the access procedure to drive data for electrical drives on PROFIBUS,
from simple frequency converters up to high performance servo controllers.
It contains a detailed description of how the communication functions "data exchange
broadcast", "equidistance" and "isochronous operation" are used appropriately in drive
applications. In addition, it specifies all device characteristics which influence interfaces
connected to a controller over PROFIBUS or PROFINET. This also includes the State
machine (sequential control), the encoder interface, the normalization of values, the
definition of standard message frames, the access to drive parameters, the drive
diagnostics, etc.
The PROFIdrive profile supports both central as well as distributed motion control concepts.
The basic philosophy: – Keep it simple –
The PROFIdrive profile tries to keep the drive interface as simple as possible and free from
technology functions. This philosophy ensures that reference models as well as the
functionality and performance of the PROFIBUS/PROFIDRIVE master have no or very little
effect on the drive interface.

3.3 Segmentation in application classes

Integration of drives in automation solutions
The integration of drives into automation solutions depends strongly upon the drive task. To
cover the extensive range of drive applications from the most simple frequency converter up
to highly dynamic, synchronized multi-axis systems with a single profile, PROFIdrive defines
six application categories which cover most drive applications.

Table 3-1 Table 3-1 Application/utilization categories

Category Drive
Category 1 Standard drives (such as pumps, fans, agitators, etc.)
Category 2 Standard drives with technology functions
Category 3 Positioning drives
Category 4 Motion control drives with central, higher-level motion control intelligence
Category 5 Motion control drives with central, higher-level motion control intelligence and the

patented "Dynamic Servo Control" position control concept
Category 6 Motion control drives with distributed, motion control intelligence integrated in the

drives

PROFIdrive defines a device model based on function modules which cooperate in the
device and generate the intelligence of the drive system.
Objects are assigned to these modules that are described in the profile and defined in terms
of their function. The overall functionality of a drive is therefore described through the sum of
its parameters.

 PROFIdrive
 3.3 Segmentation in application classes

Communication
System Manual, 08/2008 27

In contrast to other drive profiles, PROFIdrive defines only the access mechanisms to the
parameters as well as a subset of approx. 70 profile parameters such as the fault buffer,
drive control and device identification.
All other parameters are manufacturer-specific which gives drive manufacturers great
flexibility with respect to implementing control functions. The elements of a parameter are
accessed acyclically over the so-called DP-V1 parameter channel (Base Mode Parameter
Access).
PROFIdrive uses DP V0, DP V1 and the DP V2 expansions for PROFIBUS and the
contained slave data exchange broadcast and isochronous operation functions as the
communication protocol.
Utilization category 4 is the most important for highly dynamic and highly complex motion
control tasks. This application category describes in detail the master/slave relationship
between the controller and the drives which are connected to each other over PROFIBUS
and PROFINET.

Figure 3-1 Utilization categories

The DSC (Dynamic Servo Control) function significantly improves the dynamic response and
stiffness of the position control loop by minimizing the dead times which usually occur for
speed setpoint interfaces with an additional, relatively simple feedback network in the drive.
The position control loop is closed in the drive which enables very fast position control cycles
(e.g. 125 μs for SINAMICS S) and thus limits dead times exclusively to the control behavior.

 Note
In SIMOTION, the drive interface is implemented according to the PROFIdrive profile and
utilization category 5 with and without DSC.

PROFIdrive
3.4 PROFIdrive-specific data types

 Communication
28 System Manual, 08/2008

3.4 PROFIdrive-specific data types

Description
A range of data types have been defined for the purpose of using communication that is
compliant with PROFIdrive. You will find detailed information on this in the following
standards:
● IEC 61800-7-203
● IEC 61800-7-303
● IEC 61158-5
These standards contain detailed descriptions of the data types. The most important data
types are listed below. Data types are used, for example, by the function
_readDriveParameterDescription.

PROFIdrive profile-specific data types

Data types used in the PROFIdrive profile Definition Coding
(dec.)

Boolean Boolean (IEC 61158-5) 1
Integer8 Integer8 (IEC 61158-5) 2
Integer16 Integer16 (IEC 61158-5) 3
Integer32 Integer32 (IEC 61158-5) 4
Unsigned8 Unsigned8 (IEC 61158-5) 5
Unsigned16 Unsigned16 (IEC 61158-5) 6
Unsigned32 Unsigned32 (IEC 61158-5) 7
FloatingPoint32 Float32 (IEC 61158-5) 8
FloatingPoint64 Float64 (IEC 61158-5) 15
VisibleString VisibleString (IEC 61158-5) 9
OctetString OctetString (IEC 61158-5) 10
TimeOfDay (with date indication) TimeOfDay (IEC 61158-5) 11
TimeDifference TimeDifference (IEC 61158-5) 12
Date Date (IEC 61158-5) 13
TimeOfDay (without data indication) TimeOfDay (IEC 61158-5) 52
TimeDifference (with data indication) TimeDifference (IEC 61158-5) 53
TimeDifference (without data indication) TimeDifference (IEC 61158-5) 54
Specific data types See below for description
N2 (normalized value (16-bit)) 113
N4 (normalized value (32-bit)) 114
V2 bit sequence 115
L2 nibble 116
R2 reciprocal time constant 117
T2 time constant (16-bit) 118
T4 time constant (32-bit) 119

 PROFIdrive
 3.4 PROFIdrive-specific data types

Communication
System Manual, 08/2008 29

Data types used in the PROFIdrive profile Definition Coding
(dec.)

D2 time constant 120
E2 fixed-point value (16-bit) 121
C4 fixed-point value (32-bit) 122
X2 normalized value, variable (16-bit) 123
X4 normalized value, variable (32-bit) 124

Normalized value N2, N4
Linear normalized value, 0% corresponds to 0 (0x0), 100% corresponds to 212 (0x4,000) for
N2, or 228 (0x40,000,000) for N4. The length is 2 or 4 octets.
Coding
Represented in two's complement; MSB (most significant bit) is the first bit after the sign bit
(SN) of the first octet.
● SN = 0; positive numbers with 0
● SN = 1; negative numbers

Bit Range of values

N2, N4
Resolution N2, N4 Cod. N2,

N4 (dec.)
Octet

8 7 6 5 4 3 2 1
1 SN 20 2-1 2-2 2-3 2-4 2-5 2-6 -200% ≤ i ≤ (200-

2-14)%
2-12 = 0.0061% 113

2 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14
3 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 -200% ≤ i ≤ (200-

230)%
2-28 = 9.3 * 10-8% 114

4 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30

Normalized value X2, X4 (example X = 12/28)
Linear normalized value, 0% corresponds to 0 (0x0), 100% corresponds to 2x. These
structures are identical to N2 and N4, except that normalization is variable. Normalization
can be determined from the parameter descriptions. The length is 2 or 4 octets.
Coding
Represented in two's complement; MSB (most significant bit) is the first bit after the sign bit
(SN) of the first octet.
● SN = 0; positive numbers with 0
● SN = 1; negative numbers

Bit Range of values

X2, X4
Resolution X2, X4 Cod. X2,

X4 (dec.)
Octet

8 7 6 5 4 3 2 1
1 SN 22 21 20 2-1 2-2 2-3 2-4 -800% ≤ i ≤ 800-

2-12)%
2-12 123

2 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12
3 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 -800% ≤ i ≤ 800-

2-28)%
2-28 124

4 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28

PROFIdrive
3.4 PROFIdrive-specific data types

 Communication
30 System Manual, 08/2008

Fixed-point value E2
Linear fixed-point value with four places after the decimal point. 0 corresponds to 0 (0x0),
128 corresponds to 214 (0x4,000). The length is 2 octets.
Coding
Represented in two's complement; MSB (most significant bit) is the first bit after the sign bit
(SN) of the first octet.
● SN = 0; positive numbers with 0
● SN = 1; negative numbers

Bit Range of values E2 Resolution Cod.

(dec.)
Octet

8 7 6 5 4 3 2 1
1 SN 27 26 25 24 23 22 21 -256+2-7 ≤ i ≤ 256-2-

7
2-7 =
0.0078125

121
2 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7

Fixed-point value C4
Linear fixed-point value with four places after the decimal point. 0 corresponds to 0 (0x0),
0.0001 corresponds to 20 (0x0000 0001).
Coding
As with Integer32, the weighting of the bits has been reduced by a factor of 10,000.

Range of values Resolution Coding (dec.) Length
-214,748.3648 ≤ i ≤ 214,748.3648 10-4 = 00001 122 4 octets

Bit sequence V2
Bit sequence for checking and representing application functions. 16 Boolean variables are
combined to form 2 octets.

Bit Range of values Resolution Cod.

(dec.)
Octet

8 7 6 5 4 3 2 1
1 15 14 13 12 11 10 9 8 115
2 7 6 5 4 3 2 1 0

 PROFIdrive
 3.4 PROFIdrive-specific data types

Communication
System Manual, 08/2008 31

Nibble (half-byte) L2
Four associated bits make up a nibble. Four nibbles are represented by two octets.
Coding

Bit Range of values Resolution Cod.

(dec.)
Octet

8 7 6 5 4 3 2 1
1 Nibble 3 Nibble 2 - - 116
2 Nibble 1 Nibble 0

Time constants T2 and T4
Time data as a multiple of sampling time Ta. Interpreted value = internal value * Ta
Coding
● T2: As with Unsigned16, with a restricted range of values of 0 ≤ x ≤ 32,767.

When interpreted, internal values that fall outside this range of values are set to 0.
● T4: As with Unsigned32
The values for the time parameters of types D2, T2, T4, and R2 always relate to the
specified, constant sampling time Ta. The associated sampling time (parameter p0962) is
required to interpret the internal value.

Range of values Resolution Coding (dec.) Length
 0 ≤ i ≤ 32,767 * Ta Ta 118 2 octets
 0 ≤ i ≤ 4,294,967,295 * Ta Ta 119 4 octets

Time constant D2
Time data as a fraction of the constant sampling time Ta. Interpreted value = internal value *
Ta/16,348
Coding
● T2: As with Unsigned16, with a restricted range of values of 0 ≤ x ≤ 32,767.

When interpreted, internal values that fall outside this range of values are set to 0.

Range of values Resolution Coding (dec.) Length
 0 ≤ i ≤ (2-2-14) * Ta Ta 120 2 octets

PROFIdrive
3.4 PROFIdrive-specific data types

 Communication
32 System Manual, 08/2008

Time constant R2
Time data as a reciprocal multiple of the constant sampling time Ta. Interpreted value =
16,348 * Ta/internal value
Coding
● T2: As with Unsigned16, with a restricted range of values of 0 ≤ x ≤ 16,384.

When interpreted, internal values that fall outside this range of values are set to 16,384.

Range of values Resolution Coding (dec.) Length
 1 * Ta ≤ i ≤ 16,384 * Ta Ta 117 2 octets

Communication
System Manual, 08/2008 33

PROFIBUS 4
4.1 Cyclic communication

4.1.1 Cyclic communication (overview)

Description
PROFIBUS DP (Decentralized Peripherals) is designed for fast data exchange at the field
level. The communication is performed in a class 1 PROFIBUS master (e.g. a SIMOTION
controller) and PROFIBUS slaves (e.g. a SINAMICS S120 drive). The data exchange with
decentralized devices is mainly performed cyclically (DP V0 communication). In this case,
the central controller (SIMOTION controller) reads the input information cyclically from the
slaves and writes the output information cyclically to the slaves. Moreover, diagnostics
functions are made available through the cyclic services. The following figure shows the data
protocol on PROFIBUS DP.

Figure 4-1 Data protocol on Profibus

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
34 System Manual, 08/2008

4.2 DP V1 acyclic communication

4.2.1 Acyclic communication to slaves

Description
PROFIdrive drive devices are supplied with control signals and setpoints by the controller
and return status signals and actual values.
These signals are normally transferred cyclically (namely, continuous) between the controller
and the drive.
In addition, PROFIdrive drive devices recognize parameters that contain other required data,
such as error codes, warnings, control parameters, motor data. This data is normally not
transferred cyclically (i.e. continuously), but "acyclically" when required. Commands for the
drive can also be transferred using parameter accesses.
The reading/writing of parameters from PROFIdrive drives is always performed using so-
called DP V1 services, "read data record" or "write data record".
These services are defined and provided by PROFIBUS; they can be used in parallel to the
cyclical communication on the PROFIBUS. The PROFIdrive profile specifies precisely how
the basic PROFIBUS mechanisms for the write access are used for parameters of a
PROFIdrive-conform drive, see PROFIdrive profile.

Literature note
PROFIBUS Profile PROFIdrive – Profile Drive Technology
Version V4.1, May 2006,
PROFIBUS User Organization e. V.
Haid-und-Neu-Strasse 7, 76131 Karlsruhe (Germany)
http://www.profibus.com
Order Number 3.172, specifically Chap. 6

4.2.2 Reading and writing data with DP V1

Description
Data set 47, whose structure is defined in the PROFIdrive profile, is always used for
communicating the writing/reading parameters for PROFIdrive drives, such as SINAMICS
S120. The structure is also contained, for example, in the Acyclical Communication section
of the SINAMICS S120 Commissioning Manual.
A parameter access always consists of a pair of items consisting of "Write data record" and
"Read data record" in this sequence, irrespective of whether a read or write access is
involved.
A "Write data record" is used to transfer the parameter job (for example, read parameter x).
A "Read data record" is used to fetch the response for this parameter job (value of
parameter x).

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 35

 Note
For communication via PROFIBUS, the data set 47 is used to access parameters in
PROFIdrive drives. When PROFINET is used, the basic processes do not change, although
the data record number is then 0xB02F ("Base Mode Parameter Access Local"). PROFINET
will not be discussed further in this document.

Figure 4-2 Read and write DP V1

The figure Read and write DP V1 shows that both "Write data record" and "Read data
record" consist of "Request" and "Response".

Request Reference
The "Write Request" is initiated by the controller and also contains in the data to be
transferred information that allows the subsequent "Read Response" of the target device to
be assigned (see below: the header of the Parameter Request data record contains a
"Request Reference"). This information is mirrored by the target device with the Parameter
Response (see "Request Reference mirrored" under Data record 47 (Page 37)) and thus
enables an assignment.
This "Request Reference" is used not only for the assignment of request and response, but
also for the assignment of "Write data record" to the following "Read data record", because
the controller can process several actions in parallel to different target devices using the
same PROFIBUS.
The controller does not process this "Request Reference". However, the user program can
or should process this reference.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
36 System Manual, 08/2008

 Note
The PROFIdrive standard specifies that in PROFIdrive drives no pipelining of jobs is
supported, namely, only one "Read/write data record" is possible concurrently for a single
drive device. If, however, several PROFIdrive drive devices are connected to a controller
using PROFIBUS, a job can be processed in parallel for each of these drive devices. The
maximum number then depends on the controller. The data for SIMOTION is specified in
Rule 5 - a maximum of eight concurrent calls is possible in SIMOTION (Page 49).

 Note

The PROFIdrive standard does not specify how a PROFIdrive drive should behave when an
attempt is made to process more than one "Read/write data record" action concurrently with
the drive. Therefore, differences between various PROFIdrive drive products according to
the implementation must be expected.

 Note

The PROFIdrive standard does not specify how a controller should behave when the user
attempts to process more than one "Read/write data record" action concurrently with the
drive. Therefore, differences between various controllers according to the implementation
must be expected.

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 37

4.2.3 Data set 47

Structure of data set 47
The data set 47 always consists of:
● A header (job reference, job identification, target axis / drive object, number of

parameters in the job)
● User data (attribute, number of elements/indexes, parameter number and subindex), for

write jobs, also the values.
The data to be transferred for a WRITE or READ request has the following structure.

 Job parameters Offset

Request
Reference

RequestID 0 Request Header

Axis Number of
parameters

2

Attribute Number of
elements

4

Parameter number 6

1. Parameter address

Subindex 8
...

Attribute Number of elements
Parameter number

nth parameter address

Subindex
Values only for
write access

Format Number of values 1. parameter value(s)

Values
....

...
Format Number of values
Values

nth parameter value(s)

...

Structure after Base Mode Parameter Access - Parameter Request

The following structure is defined for the subsequent Parameter Response.

 Parameter
response

 Offset

Request
Reference
mirrored

RequestID 0 Request Header

Axis-No / DO-ID
mirrored

Number of
parameters

2

Values only for
read access

Format Number of values 4

1. parameter
value(s)

Values or error values 6

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
38 System Manual, 08/2008

 Parameter
response

 Offset

...
...

Error values for
negative response
only

Format Number of values

Values or error values

nth parameter
value(s)

...

Structure after Base Mode Parameter Access - Parameter Response

The exact coding of the individual parts of the data structure can be obtained from the
PROFIdrive profile or the SINAMICS S120 Commissioning Manual. The assignment of
"Request" and "Response", and "Write data record" and "Read data record" using the
"Request Reference" job reference in the above table is important.

Writing parameter records
To write parameter values (one or more), the data set 47 is first created (parameter
number(s) and value(s)), and then transferred using "Write data record". A subsequent
"Read data record" returns the information whether the writing of the values was successful.
A successful completion of "Write data record" signals only the correct transfer of the data
record over the communications path, but not the correct execution of the write action in the
target device.

Reading parameter records
To read parameter values, the data set 47 is created first with the parameter(s) to be read.
This data record is transferred to the drive using "Write data record". A subsequent "Read
data record" then returns the required values once (the same job reference will also be
returned in the response).
The processes are also shown as diagram in the figure Read and write DP V1.
The PROFIdrive profile specifies how data larger than one byte is to be transferred. The so-
called "Big Endian" format, the highest value parts are transferred first, is used:

WORD High Byte (Byte 1) Low Byte (Byte 2)
DOUBLE WORD High Word High Byte (Byte 1) Low Byte (Byte 2)
 Low Word High Byte (Byte 3) Low Byte (Byte 4)

WORD and DWORD representation in Big Endian format

Since the controller in certain cases has a different internal data representation, an explicit
conversion must be performed for the grouping and processing of the data in data set 47.
A conversion may be required for SIMOTION, see Program example (Page 64).

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 39

4.2.4 Error assessment

Description
Two different types of errors can occur in conjunction with DP V1 services:
● Error in the communication (transfer of data)

For example, the addressed device may not exist and is not switched on. This type of
error is indicated with the return values of the system functions and is defined in the
description of the system functions in the SIMOTION reference lists.

● Error during the processing of the jobs themselves
For example, an attempt is made to write to a read-only parameter.
Error codes for this second type of errors for PROFIdrive-conform drives are defined in
the PROFIdrive standard and, for example, can be found in the SINAMICS S120
Commissioning Manual.
The ID 0x81 (hex) or 0x82 (hex) response indicates an error for the parameter access.
The error codes are returned in the response of the drive device in data set 47, see the
above table, "Values or error values". The differentiation whether the queried parameter
represents an error code or a "true" value can be made in the "Format" field in the
Parameter Response, see the table Structure after Base Mode Parameter Access -
Parameter Response, Offset 4, "Format".
The SINAMICS S120 Commissioning Manual contains the coding for the "Format" field.
Code 0x44 (hex) indicates an error code in the "Values" field. Other "Format" values
specify the number format (e.g. Bool, Byte, Integer8, etc.) with which the value in the
"Values" field was returned.

4.2.5 Additional information for the parameters of a PROFIdrive drive

Description
From a PROFIdrive drive device, not only the values of parameters, but also the descriptions
of the parameters, can be read.
The differentiation is made for the transferred "Parameter Request" in data set 47 in the
"Attribute" field:

Attribute = 0x10 (hex) Value
Attribute = 0x20 (hex) "Parameter Description" parameter description
Attribute 0 0x30 (hex) Parameter Text

If, rather than the value of a parameter, its "Parameter Description" is requested, the "Value"
field in the "Parameter Response" contains the description (data type, possibly the number
of indexes of the parameter, ...).

 Note
Normally, parameter descriptions are read-only.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
40 System Manual, 08/2008

4.2.6 Structure of a read/write request

Description
The following section describes the structure of write or read requests, as it can be used
when transmitting a parameter request or parameter response via PAP (Parameter Access
Point).

Transmission of a parameter request in a write request

Block Byte n + 1 Byte n
Function_Num = 0x5F (Write) Slot_Number = ... Write Header
Index = 47 Length = (Data)

Data (Length) Parameter request ...
...

Confirmation of a parameter request with a write response (without data)

Block Byte n + 1 Byte n
Function_Num = 0x5F (Write) Slot_Number = (mirrored) Write Header
Index = (mirrored) Length = (mirrored)

Request for a parameter response in a read request (without data)

Block Byte n + 1 Byte n
Function_Num = 0x5E (Read) Slot_Number = ... Read Header
Index = 47 Length = MAX

Transmission of the parameter response in a read response

Block Byte n + 1 Byte n
Function_Num = 0x5E (Read) Slot_Number = (mirrored) Read Header
Index = (mirrored) Length = (Data)

Data (Length) Parameter response ...
...

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 41

Meaning of the various transfer elements

Element
Function_Num ID of the service (Read, Write, Error)
Slot_Number Addresses the DP slave in the request, is

mirrored in the response
Index Addresses the data block in the DP slave, is

mirrored in the response.
For PROFIdrive, Index defines the 47 parameter
request and response for data set 47

Length Length of transferred data in bytes

4.2.7 System commands in SIMOTION

4.2.7.1 _writeRecord/_readRecord SIMOTION system commands

Description
A "write data record" can be performed in SIMOTION using the _writeRecord() system
command. A "read data record" can be performed in SIMOTION using the _readRecord()
system command. This makes it also possible to read, write or fetch the description of
parameters in a PROFIdrive drive.
The description of the system functions, their input parameters and return values is
contained in the SIMOTION system documentation:
● C2xx reference list
● D4XX reference list
● P350 reference list
The _write/_readRecord system commands can be used universally, not just for PROFIdrive
drives, but, for example, also for intelligent sensors on the PROFIBUS or other peripheral
modules that support the so-called DP V1 services for PROFIBUS.

 Note
For SIMATIC, the corresponding system functions are
SFB52 WR_REC Write data record
SFB53 RD_REC Read data record

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
42 System Manual, 08/2008

The following is required to be able to use the SIMOTION system commands
_write/_readRecord:
● PROFIBUS DP: Access is possible via a logical I/O address as well as a diagnostics

address.
● PROFINET IO: Access is only possible via the diagnostics address of a Parameter

Access Point (PAP).
Furthermore, the DO ID is only relevant for data set 47 (0x002f) and Global Access
(PROFINET 0xb02f). The diagnostics address of the corresponding PAP is relevant for Local
Access (PROFINET IO 0xb02e), the DO ID is not analyzed.
As a result, for example in connection with PROFIdrive drives, the message frame start
address of the PROFIdrive message frame exchanged cyclically with the device is required.
If a drive has several axes (with a shared PROFIBUS interface connection) on a drive
device, to differentiate the axes in the same device, the "Axis-No." or "DO-ID" in data set 47
is also required. SIMODRIVE 611universal and SINAMICS S120 are examples for such
multi-axis drives. To determine the "DO-ID" for SINAMICS S120, refer to the Acyclical
Communication section in the SINAMICS S120 Commissioning Manual.
"Axis-No." or "DO-ID" = 0 can be used to access the so-called "global parameters".
Examples of such "global parameters" are:
● P0918: PROFIBUS address
● P0964: Device identification (manufacturer, version, number of axes, etc.)
● P0965: Profile number (the implemented PROFIdrive version)
● P0978: List of the DO Ids (the set "Axis-No." or "DO-ID")

4.2.7.2 _writeDrive.../_readDrive... SIMOTION system commands

Description
Whereas the _readRecord and _writeRecord system functions can be used universally for all
devices on PROFIBUS that support the so-called "read/write data record" DP V1 services,
the following commands are specially tailored to PROFIdrive drives using the PROFIdrive
profile:
● _read/writeDriveParameter (reads/writes a, possibly indexed, drive parameter)
● _read/writeDriveMultiParameter (reads/writes several, possibly indexed, drive parameters

for a drive or drive object)
● _readDriveFaults (reads the current fault buffer entry of a drive or drive object)
● _readDriveParameterDescription (reads the descriptive data of a parameter from the

drive or drive object)
● _readDriveParameterDescription (reads the descriptive data of several parameters from

the drive or drive object)
The commands create internally the data set 47 required for the individual functions in
accordance with PROFIdrive profile using the parameters transferred by the user when the
system functions are called, and independently handle the communication to the PROFIdrive
drive using "read/write data record".

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 43

The commands are described in the SIMOTION system documentation, refer to the
reference lists for the associated platform.

See also
Scope for the rules (Page 51)

4.2.7.3 Comparison of the system commands

Description
The following table shows the most important differences between the two groups of system
commands:

Command group Advantage Disadvantages
_readRecord
_writeRecord

• Generally usable, not just for
DP V1 services for drives

• Assumes only the
knowledge of some I/O
address on the drive device
and the "DO-ID" or "Axis-No"
on the drive device

• The user must create the
data record

• The user must program two
calls for parameter accesses
in a PROFIdrive drive

• Users may need to perform
the required data
conversions themselves

• "DO-ID" or "Axis-No" must
be known

_readDrive...
_writeDrive...

• Tailored for the typical
communication with
PROFIdrive drives

• The user does not need to
know the structure of data
set 47

• Reduced programming effort
for the user for
communication to drives

• Assumes the presence or
knowledge of an I/O address
of the associated drive
object

• An I/O address for a drive
object exists only for cyclical
communication (with
PROFIBUS) to the drive
object, possibly, for
example, not for TB30 and
TMxx I/O expansion
modules used exclusively in
the drive

• The user must make any
required data conversions

Properties of the system commands

The use of the drive-specific _write/_readDrive... system commands one the one hand
makes it easier for you than using general _write/_readRecord commands, since you do not
need to know the structure of data set 47 and do not need to program the successive
_writeRecord and _readRecord calls in sequencers. Because the general usability of these
system functions means the structure of the transferred data records is not known to the
system, you may need to perform the required conversion into the representation in
accordance with the PROFIdrive profile for sending and receiving yourself, see Program
example (Page 64).

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
44 System Manual, 08/2008

On the other hand, the use of the _write/_readDrive... commands is restricted to those cases
for which there is a cyclical data traffic to the associated drive object, because this is
required as input parameter. In contrast, _write/_readRecord can also be used to access
drive objects even when no cyclical data traffic exists (or when the I/O address is not known
in the application). This succeeds with _write/_readRecord because the explicit knowledge of
the "DO-ID" or "Axis-No." and the knowledge of some I/O address on the device suffices to
construct the data set 47. This can be advantageous, for example, when individual drive
objects are used only drive-internal (namely, without cyclical message frame traffic for
control) or they are not generally known for "generic programming".
From V4.1 and up, you can also access drive objects using the _write/_readDrive...
commands, when there is no cyclic data traffic, since you can transfer the "DO ID" or "Axis
No" as a parameter.

4.2.7.4 Deleting _readDrive and _writeDrive jobs

Description
You can use the following functions to cancel or delete incorrect read or write jobs, which, for
example, were called with the _readDriveParameter:
● _abortReadWriteRecordJobs, for the _readRecord or _writeRecord functions
● _abortAllReadWriteDriveParameterJobs, for the following functions:

– _readDrive(Multi)ParameterDescription
– _readDrive(Multi)Parameter
– _writeDrive(Multi)Parameter
– _readDriveFaults

You can call the functions without needing to know or read the CommandID.

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 45

4.2.8 Rules for using _readRecord and _writeRecord

4.2.8.1 Rule 1 - the job has its own job reference

Each job has its own job reference
This is required so that different jobs can be assigned. The job reference can be reused
when the assignment is clear because of some other characteristic, such as the
chronological sequence.

4.2.8.2 Rule 2 - system functions for asynchronous programming

Description
R2: For asynchronous programming, you must repeatedly call the system function with the
same IDs until the function is terminated ("longrunner"). The correct use of the system
functions _writeRecord and _readRecord based on communication with SINAMICS S120 is
shown in the figure Correct processing with the _readRecord and _writeRecord system
functions.
The communication for reading and writing parameters for the SINAMICS S120 is always
performed using data set 47, whose structure is described in the documentation for the
SINAMICS S120, refer to the Acyclical Communication section in the SINAMICS S120
Commissioning Manual.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
46 System Manual, 08/2008

Figure 4-3 Correct processing with the _readRecord and _writeRecord system functions

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 47

4.2.8.3 Rule 3 - read/write data record per PROFIDrive drive device

Only one read/write data record per PROFIdrive drive device concurrently
The PROFIdrive profile specifies that PROFIdrive drives do not perform any pipelining and
consequently only one job will be processed at any one time. Consequently, this is also
described for SINAMICS S120 in the Commissioning Manual.

 Note
It does not matter which system functions are used for the transmission in the controller. A
PROFIdrive drive can process only one job at any one time.

 Note

It is certainly possible for other devices on the PROFIBUS that they support several
"read/write data record" in parallel.

 Note

Because the _write/_readRecord system functions can be used universally, no interlock is
performed on the controller side to limit only one "read/write data record" per PROFIdrive
drive to be initiated at any one time.

Consequence for the application on the controller:
An interlock must be set to prevent the application or different parts of the application from
sending overlapping jobs to the same PROFIdrive drive device, also refer to section
Interlocking of several calls (Page 53).

4.2.8.4 Rule 4 - the last call wins for SIMOTION

In case of doubt, the last call "wins" for SIMOTION
If Rule 3 "Only one read/write data record per PROFIdrive drive device concurrently" is
violated by a second _writeRecord command being issued to the same drive in the
meantime, the response of the first job can then no longer be read. The attempt to read the
drive response to the first job can no longer be processed by the drive and will be
acknowledged with an error and terminated. The chronological sequence is shown in the
figure The second _writeRecord call wins in case of doubt.
To differentiate between the jobs at the controller, a separate commandID was used for each
of the calls of the _writeRecord and _readRecord system functions.
To also differentiate between the jobs at the drive, unique job references for the first and
second job were assigned in data set 47.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
48 System Manual, 08/2008

Figure 4-4 The second _writeRecord call wins in case of doubt

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 49

4.2.8.5 Rule 5 - a maximum of eight concurrent calls is possible in SIMOTION

SIMOTION can manage a maximum of eight _write/_readRecord calls concurrently
Although according to rule 3 (see Rule 3 (Page 47)) only a single job can be processed at
any given time for a single PROFIdrive drive device, it is still possible for the control program
to issue several jobs in parallel.
Although this does not make any sense for a single PROFIdrive drive, it can be sensible for
communication to several drives in parallel (or possibly for other devices that support this).
For SIMOTION, resources are reserved to permit a maximum of eight _write/_readRecord
calls to be managed. The _write/_readRecord commandID is used to differentiate between
the calls. If an attempt is made to issue a ninth concurrent call, this will be acknowledged by
the controller with an error and suppressed.
The chronological sequence is shown in figure Managing 8 jobs simultaneously.
Initially seven _writeRecord jobs are initiated but not completed (no further _writeRecord
calls to complete the jobs). The eighth _writeRecord job will be initiated and further
processed until completion. It is then possible to issue a ninth call (which, however, is not
further processed by the user program). The SIMOTION _writeRecord system function then
acknowledges the attempt to issue the tenth job with error 16#80C3, because this would
have been the ninth "open" job.

 Note
The upper limit applies to each SIMOTION controller, not to each bus segment on the
controller. This means it does not matter whether the addressed target devices operate on a
single PROFIBUS segment or are assigned to several PROFIBUS segments.

 Note

Because the _write/_readRecord system functions can be used universally, no interlock is
performed on the controller side to limit only one "read/write data record" per PROFIdrive
drive to be initiated at any one time.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
50 System Manual, 08/2008

Figure 4-5 Managing 8 jobs simultaneously

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 51

 Note
If the error 16#80C3 occurs, you must set the CPU to STOP and then back to RUN. This
deletes the job buffer. In order to prevent the error, you should end the job with an abort
command, if you are unable to end the job.

4.2.9 Rules for SIMOTION _writeDrive.../_readDrive... commands

4.2.9.1 Scope for the rules

Description
The following examples are shown using the _readDriveParameter system function . The
descriptions also apply similarly for the previously mentioned _writeDrive.../_readDrive...
system functions.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
52 System Manual, 08/2008

4.2.9.2 Rule 6 - repeated call of system function for asynchronous programming

Description
For asynchronous programming, the user must call repeatedly the system function with the
same IDs until the function is terminated ("longrunner").
The following figure shows the correct use of the _readDriveParameter system function.

Figure 4-6 Correct processing with the _writeDriveParameter and _readDriveParameter system

functions

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 53

4.2.9.3 Rule 7 - multiple concurrent calls per target device

Description
The PROFIdrive standard specifies that PROFIdrive drives do not perform any pipelining and
consequently only one job will be processed at any one time. Consequently, this is also
documented for SINAMICS S120 in the SINAMICS S120 Commissioning Manual.
Because the SIMOTION _write/_readDrive... system commands have been created for the
frequent use with PROFIdrive drives, this is already handled by the controller.

 Note
It does not matter which system functions are used for the transmission in the controller. A
PROFIdrive drive can process only one job at any one time.
Consequence for the application on the controller:
An interlock must be set to prevent the application or different parts of the application from
sending overlapping jobs to the same PROFIdrive drive device.

The figure below shows the behavior when this is not handled. The attempt to issue a
second job (with unique commandID) to the same target device will be acknowledged with
an error. A further job to the same target device can then be issued only when the first job
has completed or has been canceled, see Section Releasing the Interlocking (Page 54).

Figure 4-7 Interlocking of several _readDriveParameter jobs on a target device

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
54 System Manual, 08/2008

4.2.9.4 Rule 8 - release the interlocking after the complete processing of a job

Release the interlock only after the processing of a job has been completed
The following figure shows that it does not suffice to wait for "something", but rather the
_read/_writeDrive... system functions must be called repeatedly until the job has been
processed completely. The interlock will not be freed and the internal management
resources released beforehand.
The number of calls has been selected so that the SIMOTION DP V1 interface answers each
subsequent call for the first job with 16#7002 and thus is not processed completely.
Depending on the loading of the bus and the drive, this can also be necessary very
frequently (>25 times). This means an estimate cannot be given.

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 55

Figure 4-8 Complete processing of a _readDriveParameter required to release the interlock

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
56 System Manual, 08/2008

4.2.9.5 Rule 9 - canceling jobs for an asynchronous call

CommandID is needed to cancel jobs for an asynchronous call
To re-enable the DP V1 service for the target device,
● either the first job must have completed (repeated calls with the commandID of the first

job)
● or cancelled (again a call of the _readDriveParameter function with the same commandID

as for the first initiation of the job. In addition, the nextCommand input parameter must
have the ABORT_CURRENT_COMMAND value).

 Note
From V4.1 and up, it is possible to cancel without knowing the commandID, see Deleting
_readDrive and _writeDrive jobs (Page 44) .

A sample call of the _readDriveParameter function with the first commandID (id1) and
ABORTED_CURRENT_COMMAND has the following form:

Return_Par_read_delete :=
 readDriveParameter(
 ioId:=INPUT,
 logAddress := 256,
 parameterNumber := number,
 numberOfElements := 0,
 subIndex:= 0,
 nextCommand :=
 ABORT_CURRENT_COMMAND,
 commandId := id1);

The figure below shows the chronological sequence.

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 57

Figure 4-9 Canceling a _readDriveParameter job with known commandID

The process in the following figure shows that it is not possible to cancel a job without
knowledge of the original commandID. Not the first job, but rather the cancel attempt will be
canceled. The reason is that the commandID is used for managing the various jobs in the
system.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
58 System Manual, 08/2008

Figure 4-10 No cancelation of a _readDriveParameter job with new CommandID

 Note
It is therefore important that the user program retains the commandID of the jobs until the job
has completed or has been canceled.

 Note

Take particular care, for example, through control by other conditions, that in the user
program the processing of the _write/_readDrive... functions is not bypassed before they
have completed.

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 59

4.2.9.6 Rule 10 - management of sixteen jobs

SIMOTION manages a maximum of 16 calls in parallel for different devices
The controller has limited resources (memory space) available for storing the management
data for _write/_readDrive... system function calls. If too many calls are issued in parallel, an
error message will be issued, similar to the limit for _read/_writeRecord in Section Maximum
Number of Calls (Page 49).
For SIMOTION, resources are reserved to permit a maximum of sixteen calls of
_writeDrive.../_readDrive... system functions to be managed. The commandID is used to
differentiate between the calls. If an attempt is made to issue a seventeenth concurrent call,
this will be acknowledged by the controller with an error and suppressed.

4.2.9.7 Rule 11 - parallel jobs for different drive devices

Parallel jobs to different drive devices are possible
The figure Parallel processing of _readDriveParameter jobs to different drive devices of a
controller shows that parallel jobs can be processed with different drive devices.. The
SIMOTION D445 controller uses the SINAMICS Integrated of a D445 (for example) as first
PROFIdrive drive device and the CX32 expansion module as second PROFIdrive drive
device.
In the example, a total of three read jobs (two jobs to the first drive device (SINAMICS
Integrated) and one job to the second drive device (CX32)) are issued with the
_readDriveParameter system function.
● The first read job for the SINAMICS Integrated is intentionally called just once so that the

interlock acts.
● The second read job is then issued to the second PROFIdrive drive device (CX32). This

job is processed successfully.
● The third read job is addressed again to the first drive device (SINAMICS Integrated) and

can no longer be executed successfully because the first job is still running.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
60 System Manual, 08/2008

Figure 4-11 Parallel processing of _readDriveParameter jobs to different drive devices of a controller

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 61

4.2.10 Special features

4.2.10.1 Rule 12 - data buffering of up to 64 drive objects

SIMOTION buffers the data of up to 64 drive objects
The first call to the functions _write/_readDrive... after system power-up runs considerably
longer than subsequent calls to the same drive object.
● The system must first set up internal management information that can be accessed

faster in subsequent calls to the same drive object.
In SIMOTION, the data of up to 64 drive objects can be stored for use with
_write/_readDrive... The distinction is made using the I/O address.

4.2.10.2 Rule 13 - a mix of system functions can be used

A mix of the _writeRecord/_readRecord and _writeDrive.../_readDrive... system functions can be used
A mixed use of the following system commands is generally possible:
● _writeRecord/_readRecord SIMOTION system commands
● _writeDrive.../_readDrive... SIMOTION system commands

 Note
However, it is important to appreciate that a missing interlock of the system commands
from the two command groups means several jobs could be issued to a PROFIdrive drive
(see following section), which a PROFIdrive drive cannot process. Handling the system-
internal interlocking for _write/_readDrive....

The figure Mixed use of _readDrive... and _read/_writeRecord shows that the
_write/_readRecord functions, in particular, can be used for the same target device when,
because of a running _readDriveParameter job, further jobs with the same command are
suppressed by the system – this situation must be blocked by the user because it cannot be
processed by a PROFIdrive.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
62 System Manual, 08/2008

Figure 4-12 Mixed use of _readDrive... and _read/_writeRecord

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 63

4.2.10.3 Rule 14 - interlocking for the mixed use of commands

The user must interlock for the mixed use of the commands from the two command groups
When the following system commands are used together, it is possible that more than one
"read/write data record" is issued concurrently to a single device because for SIMOTION
interlocking and buffering is performed only within the command groups but not between
command groups.
● _writeRecord/_readRecord SIMOTION system commands
and
● _writeDrive.../_readDrive... SIMOTION system commands
If necessary, this must be interlocked by the user to prevent data loss/overlapping because
the PROFIdrive profile specifies that a PROFIdrive drive does not perform any pipelining and
consequently can process only one job at any given time.

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
64 System Manual, 08/2008

4.2.11 Program examples

4.2.11.1 Programming example

Description
The following example shows how the _writeRecord and _readRecord system commands
can be used to fetch the error code from parameter p0945 of a SINAMICS drive (drive object
DO3, I/O address 256).

Example
The sample program can be called, for example, in the BackgroundTask, because so-called
"asynchronous programming" is used.

//===
// demonstrate reading parameter 945 (fault code) via data set 47
// using SIMOTION system functions _write/_readRecord (asynchronous call)
// INPUT address 256 is assumed to address the SINAMICS
// drive is DO3 in SINAMICS S120
//===
INTERFACE
 PROGRAM record;
 // declare request type
 TYPE
 // declare struct of header request
 Header_Type_Request : STRUCT
 Request_Reference : USINT;
 Request_Id : USINT;
 Axis : USINT;
 Number_Of_Parameter : USINT;
 END_STRUCT;

 // declare struct of parameter address request
 Parameter_Address_Request : STRUCT
 Attribute : USINT;
 Number_Of_Elements : USINT;
 Parameter_Number : UINT;
 SubIndex : UINT;
 END_STRUCT;

 // declare struct of request
 Request : STRUCT
 Header : Header_Type_Request;
 ParameterAddress : Parameter_Address_Request;
 END_STRUCT;
// declare struct of header response
 Header_Type_Response : STRUCT
 Response_Reference : USINT;
 Response_Id : USINT;
 Axis : USINT;
 Number_Of_Parameter : USINT;
 END_STRUCT;

 // declare struct of parameter address response

 PROFIBUS
 4.2 DP V1 acyclic communication

Communication
System Manual, 08/2008 65

 Parameter_Address_Response : STRUCT
 Format : USINT;
 Number_Of_Elements : USINT;
 Value_Or_Error_Value : DWORD; // dependent on format
 END_STRUCT

 // declare struct of response
 Response : STRUCT
 Header : Header_Type_Response;
 ParameterAdress : Parameter_Address_Response;
 END_STRUCT;
 END_TYPE
 // declare global variables
 VAR_GLOBAL
 // declare variable, that represents the dataset 47 request
 myRequest : Request;
 // declare variable, that represents the dataset 47 response
 myResponse : Response;
 // declare variable, that returns a value after calling _writeRecord
 myRetDINT : DINT;
 // declare variable, that returns a struct after calling _readRecord
 myRetstructretreadrecord : StructRetReadRecord;
 // declare array of byte,
 // which helps to create the request/response
 // with marshalling function
 bytearray : ARRAY[0..239] OF BYTE;
 // declare array of USINT,
 // because the systemfunctions _writeRecord and _readRecord
 // use this array
 usintarray : ARRAY[0..239] OF USINT;
 // declare command ids
 id_write, id_read : commandidtype;
 // declare the variable, to control step by step execution
 // start cycle with setting to 0 by user
 program_step : USINT := 3; // initially idle;
 END_VAR
END_INTERFACE

Implementation

// ==
IMPLEMENTATION
PROGRAM record
CASE program_step OF
// initialize ---
0:
 // get command ids for calling system functions
 id_write := _getcommandid();
 id_read := _getcommandid();
 // header from the request
 // here: Axis-No / DO-ID is 3
 // read Parameter 945 (drive fault code)
 myRequest.Header.Request_Reference := 16#10; // arbitrary no.
 myRequest.Header.Request_Id := 16#1; // read request
 myRequest.Header.Axis := 16#3; // axis no 3
 myRequest.Header.Number_Of_Parameter := 16#1; // one parameter

 // parameter address from the request

PROFIBUS
4.2 DP V1 acyclic communication

 Communication
66 System Manual, 08/2008

 myRequest.ParameterAddress.Attribute := 16#10; // read value
 myRequest.ParameterAddress.Number_Of_Elements := 16#1; // one index
 myRequest.ParameterAddress.Parameter_Number := 945; // parameter no.
 myRequest.ParameterAddress.SubIndex := 0;

 // convert myRequest to a BIBBYTEARRAY to use the marshalling functions
 // two step conversion from user defined data type
 // to usintarray type required by system functions
 bytearray := ANYTYPE_TO_BIGBYTEARRAY(myRequest,0);
 usintarray := BIGBYTEARRAY_TO_ANYTYPE(bytearray,0);

 // next step
 program_step := 1;

// execute _writeRecord --
1:
 // the systemfunctions _writeRecord and _readRecord
 // have to be called in sequence.
 // the functions occur always as pair.
 // call systemfunction _writeRecord to send the request
 myRetDINT := _writerecord(
 ioid := INPUT,
 logaddress := 256, // io address
 recordnumber := 47, // data set 47 for DPV1
 offset := 0,
 datalength := 240,
 data := usintarray, //
 nextcommand := IMMEDIATELY, // use asynchronous
 commandid := id_write // use known commandID
);
 // check the return value
 // keep calling until _writeRecord ready
 IF(myRetDINT = 0)THEN
 // next step
 program_step := 2;
 END_IF;
// wait for requested data ---
// execute _readRecord
2:
 // call systemfunction _readRecord to receive the data
 myRetstructretreadrecord := _readrecord(
 ioid := INPUT,
 logaddress := 256, // io address
 recordnumber := 47, // data set 47 for DPV1
 offset := 0,
 datalength := 240,
 nextcommand := IMMEDIATELY, // use asynchronous
 commandid := id_read // use known commandID
);
 // check the return value
 // keep calling until _readRecord ready
 IF(myRetstructretreadrecord.functionresult = 0)THEN
 // next step
 program_step := 3; // --> done
 // get data
 // two step conversion into user defined data type
 // from usintarray type given by system functions
 bytearray :=ANYTYPE_TO_BIGBYTEARRAY(
 myRetstructretreadrecord.data,0);
 myResponse := BIGBYTEARRAY_TO_ANYTYPE(bytearray,0);
 // received data can now be read from myResponse...

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 67

 END_IF;
END_CASE;
END_PROGRAM
END_IMPLEMENTATION

4.3 Communication with SIMATIC S7

4.3.1 Possible communication connections between SIMOTION and SIMATIC
The following section describes how a SIMOTION and a SIMATIC S7 device can
communicate with one another via PROFIBUS.
There are various possibilities:
● A SIMOTION device is connected as DP slave to a DP master system of a SIMATIC S7.
● A SIMATIC S7 device is connected as DP slave to a DP master system of a SIMOTION.
● A master-master communication is used between SIMOTION and SIMATIC S7.
There are two additional variants for the connection as DP slave:
● Connection as standard slave by means of a GSD file.
● Connection as intelligent DP slave (i-slave).
An i-slave is a station that has a separate intelligence, and whose range of functions as DP
slave is specified through dedicated programming.
This means that these stations have to be completely configured first with respect to their
communication structure, before they can be used as i-slave.
The available i-slaves can be found in the HW catalog of HW Config in the "Already
configured stations" folder.

Difference: "Normal" DP slave (standard slave) - intelligent DP slave (I slave)
With a "normal" DP slave such as a compact (ET 200eco) or modular (ET 200M) DP slave,
the DP master accesses the distributed inputs/outputs.
With an intelligent DP slave, the DP master does not access the connected inputs/outputs of
the intelligent DP slave, but accesses instead a transfer area in the input/output address
area of the "preprocessing CPU". The user program of the preprocessing CPU must handle
the data exchange between the operand area and inputs/outputs.

 Note
The configured I/O areas for the data exchange between the master and slaves must not be
"occupied" by I/O modules.

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
68 System Manual, 08/2008

4.3.2 SIMOTION as DP slave on a SIMATIC S7

4.3.2.1 Introduction
The following section describes how a SIMOTION device can be connected as PROFIBUS
DP slave to a PROFIBUS network.
There are two possibilities:
● The SIMOTION device is connected as standard slave to a DP master system by means

of a GSD file.
● The SIMOTION device is integrated as so-called intelligent DP slave (i-slave) in the DP

master system.

4.3.2.2 Connecting SIMOTION as DP slave with the aid of a GSD file to a SIMATIC S7

Proceed as follows
The GSD files for the various SIMOTION platforms must first be imported into STEP 7 HW
Config.
You will find the corresponding GSD files on the SIMOTION SCOUT CD "Add-on" in the
respective device directory under Firmware and Version.

Table 4-1 GSD file

Device Name of the GSD file
SIMOTION C Si0380aa.gsd
SIMOTION D4xx Si0180ab.gsd

(This file can be used for all SIMOTION D 4xx)
SIMOTION P Si0280fa.gsd

After these GSD files have been imported from the Options - Install GSD file menu into the
STEP7 HW Config, the devices appear in the HW catalog under Additional field devices -
PLC - SIMATIC - SIMOTION and can be inserted from there into a DP master system of a
S7 station.

 Note
SIMOTION devices that have been connected to a SIMATIC S7 by means of a GSD file,
cannot be accessed with SIMOTION SCOUT via a routed connection.
The name of the GSD file depends on the version, e.g. S10180AA and S10280AA.

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 69

 Note
Through a network node it is also possible to route to drives that have been inserted as
single drives.
It is thus also possible to route to SIEMENS drives that have been configured in
SCOUT/STARTER, if these are configured as GSD slave / GSDML device in HW Config.
However, the limitation that a network transition point can be set using the subnet ID, by
setting the online access parameter (Target device->Online access), applies.
Moreover, the GSD file is named according to the version.

4.3.2.3 Connecting SIMOTION as i-slave to a SIMATIC S7

Requirement
● SIMOTION SCOUT and thus STEP 7 must have been installed on the engineering PC.
● The SIMATIC S7 and the SIMOTION station must be in the same project.
If these requirements are fulfilled, the SIMOTION can also be connected as i-slave to the
PROFIBUS DP network of the SIMATIC.

Proceed as follows
It is recommended that the SIMOTION station is first completely configured as DP slave
before it is placed as slave on the DP line of the SIMATIC CPU.
The following is a description of the procedure for a SIMOTION C. The procedure is identical
apart from the selection of the SIMOTION platform.
1. Configuring a station as DP slave, e.g. SIMOTION C-2xx

Double-click the desired interface (e.g. DP2/MPI) in the configuration table and select the
DP slave option in the Operating mode tab.

2. Configuring the local I/O addresses
You can set the local I/O addresses and the diagnostics address in the Configuration tab.

3. Switch to the configured SIMATIC station that is to be DP master for the SIMOTION.
4. Creating an iSlave

Drag the station type "C2xx/P350/D4xx i-slave" from the Hardware catalog window (folder
of already configured stations) and drop it on the symbol for the DP master system of the
SIMATIC station.

5. Specifying the intelligent DP slave
Double-click the symbol for the intelligent SIMOTION DP slave and select the Link tab. In
this tab, assign the station that is to represent the intelligent DP slave. This dialog box
displays all the stations that are already available in the project and that are potential link
partners.

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
70 System Manual, 08/2008

Figure 4-13 DP slave properties

6. Select the appropriate SIMOTION and click Connect. The configured SIMOTION station
is now connected as intelligent DP slave to the SIMATIC.

7. Select the Configuration tab and assign the addresses:

Figure 4-14 Properties - configuration

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 71

● For the data exchange with the DP master via I/O areas, select the MS (Master-Slave)
mode

● For the direct data exchange with a DP slave or DP master, select the DX (Direct Data
Exchange) mode

1. Confirm the settings by clicking OK.
The configuration of the SIMOTION station as intelligent DP slave on the SIMATIC station is
now completed and data can be exchanged via the specified I/O addresses.

4.3.3 SIMATIC S7 as DP slave on a SIMOTION

4.3.3.1 Introduction
The following section describes how a SIMATIC station can be connected as PROFIBUS DP
slave to a PROFIBUS network.
There are two possibilities:
● The SIMATIC station is connected as standard slave to the DP master system of a

SIMOTION by means of a GSD file.
● The SIMATIC station is integrated as a so-called i-slave in the DP master system of a

SIMOTION.

4.3.3.2 Connecting SIMATIC as DP slave with the aid of a GSD file to a SIMOTION device

Procedure
The GSD files for the various SIMATIC stations must first be imported into STEP 7 HW
Config.
You will find the corresponding GSD files in Product Support under:
http://support.automation.siemens.com/ww/view/en/113653.
After these GSD files have been imported from the Options - Install GSD file menu into the
STEP7 HW Config, the devices appear in the HW catalog under Additional field devices -
PLC - SIMATIC and can be inserted from there into a DP master system of a SIMOTION
station.
SIMATIC S7 devices that have been connected to a SIMOTION by means of a GSD file,
cannot be accessed with STEP 7 via a routed connection.

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
72 System Manual, 08/2008

4.3.3.3 Connecting SIMATIC S7 CPU as i-slave to a SIMOTION device

Prerequisites
● SIMOTION SCOUT and thus SIMATIC STEP 7 have been installed on the engineering

PC.
● The SIMATIC S7 and the SIMOTION station must be in the same project.
If these requirements are fulfilled, the SIMATIC can also be connected as i-slave to the
PROFIBUS DP network of the SIMOTION.

Proceed as follows
It is recommended that the SIMATIC station is first completely configured as DP slave before
it is placed as slave on the DP line of the SIMOTION.
The following is a description of the procedure for a CPU 315-2 D. The procedure is identical
apart from the selection of the CPU types, also for an S7-400.
1. Configure a station, e.g. with the CPU 315-2 DP as DP slave. Double-click on line 2.1

(interface) in the configuration table and select the DP slave option in the Operating mode
tab.

2. You can set the local I/O addresses and the diagnostics address in the Configuration tab.
3. Switch to the configured SIMOTION station that is to be DP master for the SIMATIC.
4. Drag the appropriate station type, CPU 31x or CPU 41x, from the Hardware catalog

window (folder of already configured stations) and drop it on the symbol for the DP
master system of the SIMOTION station.

5. Double-click the icon for the intelligent SIMOTION DP slave and select the Link tab. In
this tab, assign the station that is to represent the intelligent DP slave. This dialog box
displays all the stations that are already available in the project and that are potential link
partners.

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 73

Figure 4-15 Properties - link

6. Select the appropriate S7 station and click Connect. The configured S7 station is now
connected as intelligent DP slave to the SIMOTION.

7. Select the Configuration tab and assign the addresses:

Figure 4-16 Configuration - address selection

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
74 System Manual, 08/2008

– For the data exchange with the DP master via I/O areas, select the MS (Master-Slave)
mode

– For the direct data exchange with a DP slave or DP master, select the DX (Direct Data
Exchange) mode

8. Confirm the settings by clicking OK.
The configuration of the SIMATIC station as intelligent DP slave on the SIMOTION station is
now completed and data can be exchanged via the specified I/O addresses.

4.3.4 PROFIBUS master-master connection between SIMATIC and SIMOTION

4.3.4.1 Introduction

Master-master communication
A master-master communication connection between a SIMATIC S7 and a SIMOTION
device via PROFIBUS is created using the SFC65 (XSEND) and SFC66 (XRECEIVE)
system functions on the SIMATIC side and the _Xsend and _Xreceive system functions on
the SIMOTION side. It is not necessary to configure a communication connection in NetPro.

Table 4-2 Master-master communication

Log SIMATIC device Function SIMOTION device Function
PROFIBUS S7-300 CPU

S7-400 CPU
SFC65 (XSEND)
SFC66 (XRCV)

C2xx
D4xx
P350

_Xsend
_Xreceive

The PROFIBUS addresses are assigned in HW Config. All further block parameters are
specified for the connection by the user and also transferred when the function is called. The
PROFIBUS connection between SIMATIC and SIMOTION is therefore similar to a TCP/IP
connection between a SIMATIC station with integrated Ethernet interface and a SIMOTION
device and vice versa. The parameters important for the communication are specified by the
user and transferred with the block or function call.
The following section describes the parameterization of the system functions on the
SIMATIC S7 side and the functions on the SIMOTION side in more detail.

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 75

4.3.4.2 SIMATIC S7 system functions for a PROFIBUS connection

Introduction
The PROFIBUS connection between a SIMATIC S7 station and a SIMOTION device was
introduced in the previous section. The following contains a detailed explanation of the
parameterization of the SIMATIC S7 system functions and the SIMOTION functions for a
PROFIBUS connection.

SIMATIC S7 system functions
On the SIMATIC S7 side, the two system functions SFC65 X_SEND and SFC66 X_RCV are
used for the communication between a SIMATIC S7 station and a SIMOTION device.
SIMOTION functions:

CALL "X_SEND"
 REQ:=M1.0
 CONT:=FALSE //This is the DP address of the
 DEST_ID:=W#16#2 //communication partner (SIMOTION P350)
 REQ_ID:=DW#16#2 //The REQ_ID must match the MessageID on
 SD:=P#DB100.0DBX0.0 BYTE 10 //the SIMOTION receive side!
 //
 RET_VAL:=MW64
 BUSY:=M1.1

Parameterization of the SFC65 X_SEND system function
The SFC65 X_SEND system function is called on the SIMATIC S7 side to send data via a
PROFIBUS connection from a SIMATIC S7 station to a SIMOTION device.
The data transfer is controlled via the REQ parameter, i.e. when the parameter is set to 1,
the data transfer is started. If there is no connection to the communication partner at this
time, it is established before the data is sent.
The CONT parameter is used for the parameterization of the connection behavior after
completion of the data transfer. If value 1 is entered in the CONT parameter, the connection
is maintained after completion of the data transfer. If 0 is entered as value, the connection is
cleared after the data transfer.
The DEST_ID parameter contains the PROFIBUS address of the SIMOTION device. It is
specified in STEP 7 HW Config.
REQ_ID identifies the send data, i.e. the sent data can be uniquely assigned to the S7
station in the SIMOTION device via the value in the REQ_ID parameter. The value assigned
here is confirmed in the messageid parameter in the receive function on the SIMOTION side.
SD specifies the area from where the send data originates.
The RET_VAL and BUSY parameters are used to monitor the status of the transmission
process. BUSY indicates that the send job is still running or has already been completely
executed. RET_VAL can be used for a detailed diagnosis when an error occurs.

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
76 System Manual, 08/2008

CALL "X_RCV"
 EN_DT:=M0.0
 RET_VAL:=MW50
 REQ_ID:=MD52
 NDA:=M0.1
 RD:=P#DB110.DBX0.0 BYTE 10

Call example of the system function SFC66 X_RCV
If data from a SIMOTION device is to be received on a SIMATIC S7 station, the SFC66
X_RCV system function must be called in the S7 program.
The "EN_DT" input of the system function specifies:
● Whether the function should only check if new data is received (EN_DT=0) or
● Whether the received data should be copied from the queue to the area specified by "RD"

(EN_DT=1).
The user can monitor the status of the function call with the RET_VAL parameter. If an error
occurs, the user receives detailed information on the cause.
REQ_ID identifies the receive data, i.e. the received data can be uniquely assigned to a
SIMOTION device via the REQ_ID parameter. The value received here corresponds to the
value in the messageid parameter in the relevant send function on the SIMOTION side.
The NDA parameter indicates whether new data has been received. If NDA is 1, new data is
available and can be transferred to the receive data area. If NDA is 0, no new data is
available.
The RD parameter specifies where the received data is stored.

SIMOTION functions

RetVal_PB_Senden:=
 _xsend(PB_Senden_CommunicationMode, PB_Senden_Address,
 PB_Senden_MessageID, PB_Sender_NextCommand, PB_Senden_CommandID,
 PB_Sende_Daten, PB_Sende_Daten_Laenge);

Example for calling the SIMOTION _xsend function
If the SIMATIC S7 station and the SIMOTION device communicate via PROFIBUS, the
_xsend function is called on the SIMOTION side for the transmission.
The "communicationmode" parameter informs the called function of what is to happen to the
connection after the successful data transfer. The function data type can assign the
ABORT_CONNECTION or HOLD_CONNECTION values. If ABORT_CONNECTION is
assigned to the parameter, the connection will be removed after the data transfer. The
HOLD_CONNECTION value is used to parameterize the function so that the connection will
be retained after a successful data transfer.
The address parameter contains a structure of the StructXsendDestAddr data type, which
also consists of various parameters. This structure contains all the information about the
communication partner address of the SIMOTION device.

 PROFIBUS
 4.3 Communication with SIMATIC S7

Communication
System Manual, 08/2008 77

Parameter structure "StructXsendDestAddr
The individual parameters of the structure are listed and explained in the following.
The deviceid parameter is used for the respective SIMOTION hardware. The physical
connection point is specified with the parameter. The value 1 is entered for interface X8 for a
SIMOTION C2xx. The value 2 is entered for interface X9. If a SIMOTION P350 is connected
to the SIMATIC S7 station on X101, the value 1 is assigned in the deviceid parameter. The
value 2 is written in the deviceid parameter for the X102 interface. For the SIMOTION D4x5,
the value 1 is entered for the X126 interface and the value 2 for the X136 interface in the
deviceid parameter.
Because no subnet mask is specified for the communication via MPI or PROFIBUS, the
value 0 is preassigned to the remotesubnetidlength parameter. Consequently, the
assignment of the remotesubnetid parameter is irrelevant.
The value 1 is set in the remotestaddrlength parameter for the MPI or PROFIBUS
communication.
The nextstaddrlength parameter specifies the length of the router address. As a router is not
used for the MPI or PROFIBUS communication between the SIMATIC S7 station and the
SIMOTION device, the value 0 is assigned for this parameter. Consequently, the nextstaddr
parameter is also irrelevant (see below).
The following remotesubnetid parameter identifies the subnet mask and has, as already
mentioned above, no significance for the communication via MPI or PROFIBUS.
The remotestaddr parameter specifies the actual destination address. The parameter is an
array. However, only the first index is used for the MPI or PROFIBUS communication. The
other five indices have no significance.
The nextstaddr parameter is used to specify the router address. The same applies for this
parameter as for the remotesubnetid parameter. Its assignment is also irrelevant for the
communication via MPI or PROFIBUS.
The messageid parameter is assigned by the user for the identification of the SIMOTION on
the receive side. The value entered enables an assignment on the SIMATIC S7 station via
the REQ_ID parameter. The value can be fetched there from the messageid parameter.
The behavior of this function with respect to the advance when called is parameterized with
the nextcommand parameter. There are two setting options: IMMEDIATELY and
WHEN_COMMAND_DONE. With the first value, the advance is immediately and with the
second value, after completion of the command.
When the function is called, a system-wide unique number is assigned in the commandid
parameter to allow tracking of the command status.
The send data is specified with the data variable when the function is called.
The datalength parameter specifies the length of the data to be transferred from the send
area.
The return value of the _xsend function to the user program is of data type DINT. The
various return values indicate any problems that occurred during the execution of the
function. There is also a confirmation when the data has been successfully sent.

RetVal_PB_Empfanen:=
 _xreceive(PB_Empfangen_MessageID,
 PB_Empfangen_NextCommand,PB_Empfangen_CommandID);

Call example of the SIMOTION _xreceive function

PROFIBUS
4.3 Communication with SIMATIC S7

 Communication
78 System Manual, 08/2008

The example shows the use of the _xreceive function. The function is used when data from a
SIMATIC S7 station is to be received via PROFIBUS.
The messageid parameter is transferred to the _xreceive function for the identification of the
S7 station from which the data is to be received. The entered value is that what was
assigned on the S7 page in the REQ_ID parameter of the corresponding _xsend system
function.
The behavior of this function with respect to the advance when called is parameterized with
the nextcommand parameter. There are two setting options: IMMEDIATELY and
WHEN_COMMAND_DONE. With the first value, the advance is immediately and with the
second value, after completion of the command.
When the function is called, a system-wide unique number is assigned in the commandid
parameter to allow tracking of the command status.
The structure returned from the function to the user program contains the functionresult,
datalength and data parameters. The receive status can be queried via the functionresult
parameter. The datalength parameter returns the number of received user data bytes after a
successful call of the _xreceive function. The received user data can be accessed via the
data parameter.

Communication
System Manual, 08/2008 79

Ethernet introduction (TCP/IP and UDP connections) 5
5.1 Introduction

The following section describes how open TCP/IP and UDP Ethernet connections can be set
up between a SIMOTION device and a SIMATIC S7 device.
All the necessary steps that have to be prepared and the required function calls are
explained using a programming example.

5.2 Configuring Ethernet subnets with SIMOTION

5.2.1 Features of the Ethernet subnets
Depending on the device, SIMOTION has one or two onboard Ethernet interfaces. You can
connect an Industrial Ethernet with a transmission rate of 10/100 Mbit/s to the 8-pin RJ45
sockets.
Alternatively, you can also connect an Industrial Ethernet through the PROFINET modules,
such as e.g. CBE30 of SIMOTION D4x5.
You can use a PG/PC to communicate with STEP 7, SIMOTION SCOUT, and SIMATIC NET
OPC.
You can also communicate with other devices such as SIMOTION devices, SIMATIC S7
devices or PCs via TCP/IP.
There is no HUB/switch functionality, i.e. message frames are not forwarded from one
interface to the other, for modules with two Ethernet interfaces. The interfaces belong to
separate Ethernet subnets. The SIMOTION devices do not have an IP router functionality,
they do not forward the message frames from one subnet to another.
With two interfaces, the TCP/IP timeout parameters can be set once for both interfaces. The
transmission rate / duplex can be set separately for the two interfaces.
"Utilities via TCP" are supported for both Ethernet interfaces. This enables S7 routing from
the Ethernet interfaces to the PROFIBUS interfaces. "Utilities via TCP" are not routed from
one Ethernet interface to the other.
The MAC addresses can be seen on the outside of the housing.

Ethernet introduction (TCP/IP and UDP connections)
5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

 Communication
80 System Manual, 08/2008

Use
Industrial Ethernet can be used with SIMOTION as follows:
● For communication with STEP 7, SIMOTION SCOUT and SIMATIC NET OPC via a

PG/PC
● For communication via UDP (User Datagram Protocol) with other components, e.g. other

SIMOTION devices, SIMATIC devices or PCs
● For communication via TCP (Transfer Control Protocol) with other components, e.g. other

SIMOTION devices, SIMATIC S7 stations or PC
● For the connection of SIMATIC HMI devices such as MP277, MP370 or PC-based HMIs
● For communication by means of SIMOTION IT DIAG and SIMOTION IT OPC XML-DA

(separate license required for each)
● For communication by means of SIMOTION VM (separate license required)

5.3 Function overview and functional sequence of Ethernet communication
via TCP/IP or UDP

5.3.1 Introduction
The following section describes which system or communication functions are available for a
configured Ethernet communication connection, and how these functions are used in the
correct execution sequence.

5.3.2 SIMOTION TCP/IP functions - modeling
The communication sequence is shown and explained based on the SIMOTION system
functions in the figure Principle communication sequence of TCP/IP communication.
These system functions must be performed by the corresponding S7 system function blocks
for communication connections with a SIMATIC S7. A corresponding comparison table is
contained in SIMATIC Functions.

The modeling explains the individual steps shown in the sequence.
● Server waits at port (1)
● Client announces connection request at this port (2). If a port is not announced on the

server, wait with TimeOut (system setting)
● Server creates internal communication port with connection announcement and releases

server port for new connection. The internal communication port is identified via the
connectionId (3)

● Possible to send/receive data via this connection not only from the client, but also from
the server (4)

 Ethernet introduction (TCP/IP and UDP connections)
 5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

Communication
System Manual, 08/2008 81

● Further connections can be established at the server port (5)
● An existing connection can be closed on the client or server side with

_tcpCloseConnection (6)
● Server port to establish connection is closed with _tcpCloseServer (7)

Figure 5-1 Principle communication sequence of TCP/IP communication

Ethernet introduction (TCP/IP and UDP connections)
5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

 Communication
82 System Manual, 08/2008

5.3.3 SIMOTION TCP/IP functions - description
The three calls of _tcpOpenClient in the modeling all refer to the same server (IP address /
port). However, internally a separate port is assigned on the server. External communication
is performed with the connectionId.
Port assignment:
● The port number is in the range 1024 to 65535.
● The port on the client can be the same as the port on the server.
● The port on the client can be different from the port on the server.
The sequence shows a simple example for the function execution sequence with two
partners:

Table 5-1 Communication between a sender (client) and a receiver (server)

 Function
Establish the connection
• Receiver/server waits for communication

request
• Sender/client requests connection to be

established to the receiver
• Receiver/server has established

communication request
• No further connection is required

_tcpOpenServer
_tcpOpenClient

_tcpCloseServer

Communicating
• Sender sends data to the receiver
• Receiver receives data from the sender

_tcpSend
_tcpReceive

Terminating communication connection
• Sender no longer sends data and closes the

connection

_tcpCloseConnection

A sender or receiver can be a client as well as a server when establishing a connection.
There must be at least one client and one server when establishing a TCP/IP connection.
The client-server relationship is only valid until the connection is established. After the
connection has been established, both communication partners are equivalent, i.e. each of
the two can send or receive or close the connection at any time.

5.3.4 SIMOTION UDP functions - modeling

Description of UDP (User Datagram Protocol)
UDP (User Datagram Protocol) makes a procedure available to send and receive data over
Ethernet from the user program with a minimum of protocol mechanism. No information
concerning the transferred data is returned in case of communication via UDP.
The communication takes place via ports on both the send and receive sides.
As opposed to TCP/IP, you do not need to program any connection buildup or closing.

 Ethernet introduction (TCP/IP and UDP connections)
 5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

Communication
System Manual, 08/2008 83

UDP communication model
● For reception, in the command you address the port that you want to use on your

component for the communication job.
● When sending data you specify the IP address of the target system, the port number for

the data on the target system and the port number of your component (see above).
● You can specify whether the port should remain reserved on your end after the

communication job has been executed.
● UDP is not a secured model. Therefore, data may be lost during transfer. A secured data

transfer must be programmed in your application, e.g. by acknowledging the receipt of
the data.

● Function _udpReceive allows you to transfer the data of a transfer protocol in the return
structure, if several data protocols have been returned with _udpReceive, the "oldest"
data protocol is returned.

The following figure shows the UDP communication model at the SIMOTION end

Figure 5-2 UDP communication model

See also
Function _udpSend (Page 115)
Function _udpReceive (Page 116)
UDP connection (Page 92)

Ethernet introduction (TCP/IP and UDP connections)
5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

 Communication
84 System Manual, 08/2008

5.3.5 SIMATIC functions
The following is a comparison of the SIMOTION system functions with the corresponding
SIMATIC S7 functions, which are required to establish Ethernet communication between a
SIMOTION and a SIMATIC S7 device.
The assignment of the communication functions to the protocols and the individual devices is
specified in the following table.

Table 5-2 Overview of the protocols, devices and communication functions

Log SIMATIC device Function SIMOTION device Function
S7 300 CPU with
Ethernet CP
(CP343-1)

FC5 AG_SEND,
FC6 AG_RECV

S7 300 CPU with
integrated
Ethernet interface

FB63 TSEND,
FB64 TRCV,
FB65 TCON,
FB66 TDISCON,
UDT65
TCON_PAR

TCP/IP

S7 400 CPU FC50 AG_LSEND,
FC60
AG_LRECEIVE

C2xx
D4xx
P350

_tcpOpenClient,
_tcpSend,
_tcpReceive,
_tcpCloseConnecti
on,
_tcpOpenServer,
_tcpCloseServer

S7 300 CPU with
Ethernet CP
(CP343-1)

FC5 AG_SEND,
FC6
AG_RECEIVE

S7 300 CPU with
integrated
Ethernet interface

This protocol is
not supported by
CPU modules of
the S7 300 series
with integrated
Ethernet interface!

UDP

S7 400 CPU FC50 AG_LSEND,
FC60
AG_LRECEIVE

C2xx
D4xx
P350

_udpSend,
_udpReceive

PROFIBUS S7 300 /S7 400
CPU

SFC65 (XSEND)
SFC66 (XRCV)

C2xx
D4xx
P350

_Xsend
_Xreceive

The following applies for S7-300 with Ethernet CP:
Only the AG_SEND/AG_RECV functions are used with the current versions of the Ethernet
CP; the data length can be up to 8192 bytes (see table). With older versions of the Ethernet
CP, the data length is limited to <= 240 bytes per job (is valid up to block version V3.0 of
AG_SEND/AG_RECV); with later versions of the Ethernet CP, longer data (up to 8192 bytes)
can be transferred with the AG_LSEND or AG_LRECV function.
Therefore, it is important to know and take into consideration the version of the CP and the
version of the used blocks.

 Ethernet introduction (TCP/IP and UDP connections)
 5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

Communication
System Manual, 08/2008 85

The following applies for S7-400:
The AG_SEND/AG_RECV functions can also be used for the S7-400. However, the
transferable data length is generally limited to <= 240 bytes per job!
Longer data records (maximum 8192 bytes; see table) can be transferred using the
AG_LSEND/AG_LRECV functions. It is also important to know which data length the CP
supports. This can be taken from the description of the CP.
The table provides an overview of the data volumes that can be exchanged between
SIMATIC S7 and SIMOTION with the different transmission methods.

Table 5-3 Maximum transferable length per job with the communication functions

Function TCP/IP protocol UDP protocol PROFIBUS protocol
FC5 AG_SEND,
FC6 AG_RECV
(S7-300)

8192 bytes 2048 bytes

FC50 AG_LSEND,
FC60 AG_LRECV
(S7-400)

8192 bytes 2048 bytes

FB63 TSEND,
FB64 TRCV
(S7-300 CPU with
integrated Ethernet
interface)

1460 bytes This protocol is not
supported by CPU
modules of the S7-300
series with integrated
Ethernet interface!

_tcpSend,
_tcpReceive,
udpSend,
udpReceive
(SIMOTION C2xx,
D4xx, P350

4096 bytes 1400 bytes

SFC65 (XSEND),
SFC66 (XRCV)
(S7-300, S7-400)

 76 bytes

_Xsend, _Xreceive
(SIMOTION C2xx,
D4xx, P350)

 200 bytes

Ethernet introduction (TCP/IP and UDP connections)
5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP

 Communication
86 System Manual, 08/2008

5.3.6 General information
Communication via Ethernet is connection-oriented, i.e. data can only be transferred when a
connection has been established to the partner station.
TCP/IP communication is performed via data packets that are sent from the sender in a
certain size. However, these can arrive at the receiver in various data packet sizes.
The following scenarios are possible on the receiver side:
● Subpackets:

received data packet < sent data packet
● Several packets combined into a large data packet:

received data packet > sent data packet
The order of the data is maintained. Users must ensure that these data packets are restored
to the length of the sent data packet in their SIMOTION program. Details can be found in the
appropriate configuration sections.
Ethernet communication of SIMOTION with TCP/IP or UDP is possible:
● With a SIMATIC S7 module with Ethernet connection (integrated or with extra Ethernet

CP). Which SIMATIC S7 module is capable of TCP/IP can be found in the technical
specifications of the respective module. The essential module types are specified in the
table Overview of the protocols, devices and communication functions under SIMATIC
Functions (Page 84).

● With a PC. An appropriate software that supports TCP/IP communication (e.g. Perl,
Visual Basic or C++) is required on the PC.

● Between the SIMOTION Cxx, Dxx and P350 modules.
The TCP/IP system functions of SIMOTION may only be called in the BackgroundTask or in
a MotionTask.

 Ethernet introduction (TCP/IP and UDP connections)
 5.4 Preparations for the configuration of the connection between SIMOTION and SIMATIC S7

Communication
System Manual, 08/2008 87

5.4 Preparations for the configuration of the connection between
SIMOTION and SIMATIC S7

Prerequisites
Before a TCP/IP or a UDP communication connection can be created between a SIMATIC
S7 station with an Ethernet CP and a SIMOTION device, it is necessary that the SIMATIC
S7 station and the SIMOTION device have been created in the same project. (Multiple
projects are not supported in Version V4.1 of SIMOTION.)
Further requirements are that an Ethernet CP has been configured in the SIMATIC station
and that an Ethernet network is present in the project. The two communication stations must
also be connected to the network and have been assigned addresses.
The communication connection is configured in NetPro. NetPro can be accessed in several
ways:
● NetPro can be started via a menu button in the SIMATIC Manager, SIMOTION SCOUT

and HW Config.
● NetPro can also be opened in SIMOTION SCOUT via the menu Project -> Open NetPro

or in the SIMATIC Manager via the menu Options -> Configure network.
● Another option is to open NetPro via the Connections object within an S7 CPU (see

following figure). The advantage of this method is that the connection table of the
appropriate SIMATIC S7 station is opened immediately.

Figure 5-3 Display of the "Connections" object in the SIMATIC Manager

Ethernet introduction (TCP/IP and UDP connections)
5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

 Communication
88 System Manual, 08/2008

5.5 Configuring a communication connection between a SIMATIC with
Ethernet CP and a SIMOTION device

5.5.1 Configuring a communication connection between a SIMATIC with Ethernet CP
and a SIMOTION device

Proceed as follows
The connection table of the S7 station must be displayed in NetPro in order to create and
configure the communication connection. To do this, the S7 CPU within the S7 station is
selected. The connection table is then displayed in the lower working area of NetPro. A
connection table cannot be displayed for the SIMOTION device in NetPro.

Figure 5-4 Selected S7 CPU and the associated connection table

Double-clicking an empty line in the connection table opens the Insert new connection dialog
box for adding a new communications connection. The dialog box is the same for TCP/IP
and UDP connections. The dialog box can also be opened via the context menu for the
selected S7 CPU, via the menu "Insert" - "New connection…" or by clicking the button in the
menu bar.

 Ethernet introduction (TCP/IP and UDP connections)
 5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

Communication
System Manual, 08/2008 89

5.5.2 TCP/IP connection

Proceed as follows
In the Insert new connection dialog box, the setting "(unspecified)" is maintained for the
communication between an S7 CP and a SIMOTION device in the Connection partner field,
as the communication partner – the SIMOTION device – is not available for selection. The
desired connection type TCP connection is selected in the Connection field.

Figure 5-5 Insert New Connection dialog box with selected TCP/IP connection

If the Insert New Connection dialog box is exited with OK or Accept, a prompt appears to
inform you that connections are also possible via subnets and the router addresses may
have to be checked. After acknowledging this prompt, the Properties - TCP - Connection
dialog box for a TCP/IP connection opens.
The IP address and the port for the local communication partner are already pre-assigned in
the Addresses tab. The settings still have to be made for the remote communication partner.
The IP address of the SIMOTION device must be entered in the IP (DEZ) field.
A port, specified by the user on the SIMOTION device for this communication connection,
must be entered in the Port (DEZ) field. Supplementary conditions must be met for the port
on the S7 side, i.e. a port between 2000 and 5000 must be selected on the S7 side. It is best
to keep the proposed port.

Ethernet introduction (TCP/IP and UDP connections)
5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

 Communication
90 System Manual, 08/2008

Figure 5-6 "Properties - TCP Connection" dialog box - "Addresses" tab

The important parameters for the parameterization of the SEND/RECEIVE interface, via
which the connection in the user program can be referenced, can be taken from the Block
parameters field in the General tab. The communication connection is assigned a unique
reference with ID. The address of the CP is also specified as "LADDR".
The Active connection buildup checkbox can be used to specify whether the connection is to
be established from the S7 station. If an active connection buildup is selected on the S7 side,
the calls _tcpOpenServer and _tcpCloseServer must be used in the user program on the
SIMOTION side to establish and close the connection.
If, however, an active connection buildup is not selected on the S7 side, the calls
_tcpOpenClient and _tcpCloseConnection must be used in the user program on the
SIMOTION side to establish and close the connection.
Once a connection is established – irrespective by which communication partner – both
communication partners can use the connection to send and receive.

 Ethernet introduction (TCP/IP and UDP connections)
 5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

Communication
System Manual, 08/2008 91

Figure 5-7 Properties - TCP Connection dialog box - General tab

If the Properties - TCP Connection dialog box is exited with OK, the Insert New Connection
dialog box must also be closed by clicking the Close button to finish the connection
configuration. It is possible to configure further connections by selecting the desired
connection type and then clicking the Accept button.
When the configuration of the communication connection is complete, the parameters for the
call of the communication functions are defined in the S7 and SIMOTION user programs.
The block parameters specified in the General tab are required for the S7 user program. The
IP address of the SIMATIC CP, the port on the S7 side (local port in the Address tab) and
the port on the SIMOTION side (partner port in the Address tab) are required for the
SIMOTION user program.

Ethernet introduction (TCP/IP and UDP connections)
5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

 Communication
92 System Manual, 08/2008

5.5.3 UDP connection

Proceed as follows
In the Insert new connection dialog box the setting "(unspecified)" is maintained for the
communication via a UDP connection between the SIMATIC S7 CP and a SIMOTION device
in the Connection partner field, as the communication partner – the SIMOTION device – is
not available for selection The desired connection type UDP connection is selected in the
Connection field.

Figure 5-8 Insert New Connection dialog box with selected UDP connection

If the Insert New Connection dialog box is exited with OK or Accept a prompt appears to
inform you that connections are also possible via subnets and the router addresses may
have to be checked. After acknowledging this prompt, the Properties dialog box for a UDP
connection opens (see Properties - UDP connection dialog box - Addresses tab).
The IP address and also the port for the local communication partner are already pre-
assigned in the Addresses tab. The settings still have to be made for the remote
communication partner. The IP address of the SIMOTION device must be entered in the IP
(DEZ) field. A port, specified by the user on the SIMOTION device for this communication
connection, must be entered in the Port (DEZ) field.
Supplementary conditions must be met for the port on the S7 side, i.e. a port greater than
2000 must be selected on the S7 side. It is best to keep the proposed port. The Address
assignment on the block checkbox is not activated.

 Ethernet introduction (TCP/IP and UDP connections)
 5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device

Communication
System Manual, 08/2008 93

Figure 5-9 Properties - UDP Connection dialog box - Addresses tab

The important parameters for the parameterization of the SEND/RECEIVE interface, via
which the connection in the user program can be referenced, can be taken from the Block
parameters field in the General tab. The communication connection is assigned a unique
reference with ID. The address of the CP is also specified as "LADDR".

Figure 5-10 Properties - UDP Connection dialog box - General tab

If the Properties - UDP Connection dialog box is exited with OK, the Insert New Connection
dialog box must also be closed by clicking the Close button to finish the connection
configuration. It is possible to configure further connections by selecting the desired
connection type and then clicking the Accept button.
When the configuration of the communication connection is complete, the parameters for the
call of the communication functions are defined in the S7 and SIMOTION user programs. As
already mentioned, the block parameters specified in the General tab are required for the S7

Ethernet introduction (TCP/IP and UDP connections)
5.6 Creating a communication connection between a SIMATIC CPU with integrated Ethernet interface and a
SIMOTION device

 Communication
94 System Manual, 08/2008

user program. The IP address of the SIMATIC CP, the port on the S7 side (local port in the
Address tab) and the port on the SIMOTION side (partner port in the Address tab) are
required for the SIMOTION user program.

5.6 Creating a communication connection between a SIMATIC CPU with
integrated Ethernet interface and a SIMOTION device

Because of the different principle, the creation of a communication connection between a
SIMATIC CPU with integrated Ethernet interface and a SIMOTION device differs from the
configuration of a communication connection between a SIMATIC CPU with Ethernet CP
and a SIMOTION device.
A connection cannot be inserted via NetPro for the communication between a SIMOTION
and a SIMATIC CPU with integrated Ethernet interface – analogous to the communication
between two SIMOTION devices.
The SIMATIC CPU and the SIMOTION device are only assigned IP addresses in HW
Config.
The additional parameters required to establish the communication connection are specified
by the user for the two communication partners and transferred during the block call on the
S7 side and during the communication function call on the SIMOTION side.
On the S7 side, the parameters required to establish the communication connection are
transferred by means of a data block which has a specific structure. The structure of the data
block is explained in section SIMATIC S7 function blocks and SIMOTION functions to
establish a TCP/IP connection (Page 105).
Communication between a SIMATIC CPU with integrated Ethernet interface and a
SIMOTION device via UDP is not possible!

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 95

5.7 Using the functions and function blocks in the user program

5.7.1 Configuration flowchart and general information

Proceed as follows
The following figures show how a communication connection between a SIMATIC station
and a SIMOTION station is configured. The flowchart also shows in which sections the
individual steps are described in detail.

Figure 5-11 Flowchart for the configuration of a communication connection: selection of the

communications protocol and the SIMATIC station

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
96 System Manual, 08/2008

Figure 5-12 Flowchart for the configuration of a communication connection - continued: PROFIBUS

connection

 Note
The descriptions for the S7 functions and the SIMOTION functions are contained in section
S7 system functions and SIMOTION functions for a PROFIBUS connection (Page 75).

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 97

Figure 5-13 Flowchart for the configuration of a communication connection - continued: TCP/IP

connection (S7 with integrated Ethernet interface)

 Note
The descriptions for the S7 functions and the SIMOTION functions are contained in section
S7 function blocks and SIMOTION functions for a TCP/IP connection when using an S7
station with integrated Ethernet interface (Page 94).

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
98 System Manual, 08/2008

Figure 5-14 Flowchart for the configuration of a communication connection - continued: TCP/IP and

UDP connection (S7 with Ethernet CP)

 Note
The descriptions for the S7 functions and the SIMOTION functions are contained in section
S7 and SIMOTION functions for a TCP/IP connection when using an S7 station with
integrated Ethernet-CP.

You must then use the specified or determined parameters during the parameterization of
the interface in the user program, once you have performed the following:
● You have configured a communication connection between a SIMATIC CPU with

Ethernet-CP and a SIMOTION device (see Configuring a communication connection
between a SIMATIC with Ethernet CP and a SIMOTION device (Page 88))

● You have determined the parameters for the buildup of a communication connection for
each block call (see Creating a communication connection between a SIMATIC CPU with
integrated Ethernet interface and a SIMOTION device (Page 94))

Also the parameters specified for communication via PROFIBUS should be used for the
parameterization of the user interface.

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 99

5.7.2 S7 and SIMOTION functions for a TCP/IP connection when using an S7 station
with Ethernet CP

5.7.2.1 Introduction
The following section describes the parameterization of the SIMATIC S7 and the SIMOTION
functions for a TCP/IP connection used with a SIMATIC S7 station with Ethernet CP.

5.7.2.2 S7 functions
Depending on the series of the S7 station (S7-300 or S7-400), two functions each are
available for the send and receive direction for the described application case.
In the send direction, these are the FC5 (AG_SEND) and FC50 (AG_LSEND) functions. The
following section shows the form of a call in the user program and the associated
parameterization.

Table 5-4 Program example

CALL "AG_Send"

 Act :=M0.0

 ID :=1

 LADDR :=W#16#3FFD

 SEND :=P#DB100.DBX0.0 BYTE 1000

 LEN :=1000

 DONE :=M0.1

 ERROR :=M0.2

 STATUS :=MW10

CALL "AG_LSEND"

 ACT :=M0.0

 ID :=1

 LADDR :=W#16#3FFD

 SEND :=P#DB100.DBX0.0 BYTE 1000

 LEN :=1000

 DONE :=M0.1

 ERROR :=M0.2

 STATUS :=MW1.0

The structure and thus the parameterization are identical. Therefore, the important
parameters for both functions are explained together.
The ID and LADDR parameters are displayed when creating the connection in NetPro and
must be transferred for this connection when the functions are called. Transmission is
triggered via ACT. The SEND and LEN parameters define the send data and the associated
length, respectively. The DONE, ERROR and STATUS parameters are used for the
diagnostics or to return the status of the send job.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
100 System Manual, 08/2008

There are also two functions for the receive direction, FC6 (AG_RECV) and FC60
(AG_LRECV). The following section shows the form of a call in the user program and the
associated parameterization.

Table 5-5 Program example

Call "AG_RECV"

 ID :=1

 LADDR :=W#16#3FFD

 RECV :=P#DB110.DBX0.0 BYTE 1000

 NDR :=M2.0

 ERROR :=M2.1

 STATUS :=MW14

 LEN :=MW16

Call "AG_LRECV"

 ID :=1

 LADDR :=W#16#3FFD

 RECV :=P#DB110.DBX0.0 BYTE 1000

 NDR :=M2.0

 ERROR :=M2.1

 STATUS :=MW14

 LEN :=MW16

It can also be seen in the receive direction that the structure and therefore the
parameterization of the functions are identical. Therefore, the important parameters for both
functions are explained together.
The ID and LADDR parameters are specified by NetPro when creating the connection in
NetPro and must be transferred for this connection when the functions are called. The RECV
parameter specifies the data area in which the received data is stored. NDR informs the user
when new data has been received (1: new data). The LEN parameter specifies the length in
bytes of the new received data. The ERROR and STATUS parameters return a diagnosis or
the status of the receive call.

5.7.2.3 SIMOTION functions
For the application case of a TCP/IP connection between an S7 station with Ethernet CP and
a SIMOTION device, there are a total of six functions available on the SIMOTION side,
which however are not all required at the same time.
Depending on the configuration of the connection buildup on the S7 side, different functions
are used on the SIMOTION side to establish and close the connection.
If an active established connection has been specified on the S7 side, the connection is
established with the _tcpopenserver function and closed with the _tcpcloseserver function on
the SIMOTION side.
If an active established connection has not been configured on the S7 side, the connection is
established with the _tcpopenclient function and closed with the _tcpcloseconnection
function on the SIMOTION side.

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 101

The sending and receiving is performed via the _tcpsend and _tcpreceive functions
independent of the configured connection buildup and close. However, a connection must be
established before sending or receiving.

RetVal_TCPOpenClient :=_TCPOpenClient
 (port :=D435_Port,
 serveraddress :=S7_IP_Adresse,
 serverport :=S7_Port,
 nextcommand :=WHEN_COMMAND_DONE);

Call example of the SIMOTION _tcpopenclient function
If a connection is to be established to an S7 station for which no active connection buildup
has been selected on the S7 side, the _tcpopenclient function is called in the SIMOTION
user program. When called, the locally assigned SIMOTION port is transferred to the
function for the port parameter. The serveraddress parameter is the IP address of the S7
station which is transferred in an array. The port number designated as the local port number
is transferred to the function in the serverport parameter. The behavior of this function with
respect to the advance when called is parameterized with the nextcommand parameter.
There are two setting options: IMMEDIATELY and WHEN_COMMAND_DONE. With the first
value the advance is immediate and with the second value it is after completion of the
command.
When the _tcpopenclient function is called, a structure is returned to the user program that
contains the following parameters. The status of the connection buildup can be queried via
the functionResult parameter. The connectionid parameter is used as (input) parameter for
the call of the _tcpsend, _tcpreceive and _tcpcloseconnection functions and assigns a unique
TCP/IP connection to these functions. This return value is referred to in the following call
examples.

RetVal_TCPSend := _TCPSend
 (connectionid :=RetVal_TCPOpenClient.ConnctionID,
 nextcommand :=WHEN_COMMAND_DONE,
 datalength :=Soll_Sende_Datenlaenge,
 data :=TCP_Sende_Daten);

Call example of the SIMOTION _tcpsend function
The _tcpsend function is called in the SIMOTION user program to send data from
SIMOTION to the SIMATIC.
The parameters that have to be transferred when the function is called are described in the
following. The connectionid return value of the _tcpopenclient or _tcpopenserver functions is
transferred for the connectionid parameter - depending on which station the active
connection request was started, in order to uniquely define the connection to be used for
sending. The behavior of this function with respect to the advance when called is also
parameterized with the nextcommand parameter. There are two setting options:
IMMEDIATELY and WHEN_COMMAND_DONE. With the first value, the advance is
immediately and with the second value, after completion of the command. The datalength
parameter informs the function of the user data length in bytes to be transferred. The data
parameter specifies the location of the user data area for the send data to be transferred with
the function.
The return value of the function to the user program is of DINT data type. The various return
values indicate any problems during the execution of the function. There is also a
confirmation when the data has been successfully sent.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
102 System Manual, 08/2008

RetVal_TCPReceive := _TCPReceive
 (connectionid :=RetVal_TCPOpenclient.ConnectionID,
 nextcommand :=IMMEDIATELY,
 receivevariable :=TCP_Empfangs_Daten);

Call example of the SIMOTION _tcpreceive function
The _tcpreceive function is called in the SIMOTION user program to receive data from a
SIMATIC station on the SIMOTION side.
Various parameters are transferred when the function is called. The connectionid return
value of the _tcpopenclient or _tcpopenserver functions is transferred for the connectionid
parameter - depending on which station the active connection request was started, in order
to uniquely define the connection to be used for receiving. The behavior of the _tcpreceive
function with respect to the advance when called is also parameterized with the
nextcommand parameter. There are two setting options: IMMEDIATELY and
WHEN_COMMAND_DONE. With the first value, the advance is immediately and with the
second value, after completion of the command. Typically during the transfer of various user
data lengths between SIMATIC and SIMOTION, starting from a user data length of more
than 240 bytes, the user data is transferred in unpredictable packet sizes.
In this case, it must also be ensured that the user data is stored in the correct sequence
before the evaluation and processing on the SIMOTION side. To do this, the nextcommand
parameter should be set to IMMEDIATELY. The receivevariable parameter informs the
function in which user data area the data received from the SIMATIC side is to be stored.
When the _tcpreceive function is called, a structure is returned to the user program that
contains the following parameters. The receive status can be queried via the functionresult
parameter. The datalength parameter returns the number of received user data bytes after
successful call of the _tcpreceive function.

RetVal_TCPCloseConnection := _TCPCloseConnection
 (connectionid :=RetVal_TCPOpenclient.ConnectionID
);

Call example of the SIMOTION _tcpcloseconnection function
The _tcpcloseconnection function is called on the SIMOTION side to close a connection for
which no active connection buildup has been selected in the connection configuration on the
S7 side (i.e. the Active connection buildup checkbox has not been activated).
Only the connectionID return value of the _tcpopenclient function is transferred to the
function in the connectionid parameter to uniquely specify the connection to be closed.
The return value of the function to the user program has DINT data type and indicates any
problems during the execution of the function or signals if the connection has been closed
successfully.

RetVal_TCPOpenServer := _TCPOpenServer
 &#i921; port:=D435_Port, backlog := 5,
 nextcommand := WHEN_COMMAND_DONE);

Call example of the SIMOTION _tcpopenserver function
The _tcpopenserver function is called on the SIMOTION side to open the connection for the
data exchange if an active connection buildup has been specified in the connection
configuration on the S7 side (i.e. the Active connection buildup checkbox has not been
activated).

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 103

To parameterize the function, the locally assigned SIMOTION port is transferred for the port
parameter. The maximum number of parallel connection requests for this port that are to be
permitted from other controllers is also specified as a further parameter for backlog. The
behavior of this function with respect to the advance when called is also parameterized with
the nextcommand parameter. There are two setting options: IMMEDIATELY and
WHEN_COMMAND_DONE. With the first value the advance is immediate and with the
second value it is after completion of the command.
When the _tcpopenserver function is called, the structure returned to the user program
contains the following parameters. The status of the connection buildup can be queried via
the functionResult parameter. The connectionid parameter is used as (input) parameter for
the call of the _tcpsend and _tcpreceive functions and assigns a unique TCP/IP connection
to these functions. This return value is referred to in the above call examples.
The two following parameters that are returned to the user program in the structure are
configured by the user in NetPro and therefore known. However, for completeness, they
should still be specified. The clientAddress parameter returns as array the IP address of the
S7 station from which the connection is activated. The port number designated as the local
port number of the S7 station is specified in the clientPort parameter.

RetVal_TCPCloseServer:= _TCPCloseServer(port:= D435_Port);

Call example of the SIMOTION _tcpcloseserver function
The _tcpcloseserver function is called for the connection on the SIMOTION side if a
connection is to be closed for which an active connection buildup has been selected in the
connection configuration on the S7 side (i.e. the Active connection buildup checkbox has
been activated).
Only the locally assigned SIMOTION port is transferred to the function for the port
parameter.
The return value of the function to the user program has DINT data type and indicates any
errors in the parameterization of the function or signals if the port has been closed
successfully.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
104 System Manual, 08/2008

5.7.3 S7 and SIMOTION functions for a UDP connection when using an S7 station with
Ethernet CP

5.7.3.1 Introduction
The following section describes the parameterization of the S7 and the SIMOTION functions
for a UDP connection that was created for use with an S7 station with Ethernet CP.

5.7.3.2 S7 functions
The functions used for this application case are also the S7 FC5 (AG_SEND), FC50
(AG_LSEND), FC6 (AG_RECV) and FC60 (AG_LRECV) functions described previously.
The ID and LADDR parameters assigned for the connection by NetPro are shown using an
example. All further parameters for the parameterization of the above functions for a UDP
connection between an S7 station with Ethernet CP and a SIMOTION device have already
been described and can be referenced.

5.7.3.3 SIMOTION functions
Two functions are used on the SIMOTION side for the application case of a UDP connection
between an S7 station with Ethernet CP and a SIMOTION device.
The sending of data is performed via _udpSend. If data is to be received on the SIMOTION
side, the _udpReceive function is used. The following program examples show the call and
parameterization.

RetVal_UDPSend :=_UDPSend(sourceport:= P350_Port,
 destinationaddress :=S7 IP address,
 destinationport :=S7_Port,
 communicationmode :=CLOSE_ON_EXIT,
 datalength :=UDPDatalength_Send,
 data :=UDPSendData);

Sample call of the SIMOTION _udpSend function
When the _udpSend function is called, the port assigned on the SIMOTION side is
transferred for the sourceport parameter. The destinationaddress parameter is an array that
specifies the IP address of the S7 station. The IP address of the S7 station can be
configured and read out in HW Config. The port specified as "local port" on the S7 side is
transferred as destinationport. The user can specify with communicationmode whether the
communication resources are to be released after sending (CLOSE_ON_EXIT) or not
(DO_NOT_CLOSE_ON_EXIT). The datalength and data parameters specify the data length
to be sent or the area where the sent data is stored.
The status of the send job can be checked via the return value of the function.

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 105

RetVal_UDPReceive :=_udpreceive(port:=P350_Port,
 communicationmode :=CLOSE_ON_EXIT,
 nextcommand :=WHEN_COMMAND_DONE,
 receivevariable :=UDPReceiveData);

Call example of the SIMOTION _udpReceive function
When the _udpReceive function is called, the port designated as "Partner port" on the
SIMOTION side is also specified for the port parameter. The user can also specify with
communicationmode whether the communication resources are to be released after receipt
(CLOSE_ON_EXIT) or not (DO_NOT_CLOSE_ON_EXIT).
The behavior of this function with respect to the advance when called is parameterized with
the nextcommand parameter. There are three setting options for this parameter:
IMMEDIATELY, WHEN_COMMAND_DONE and ABORT_CURRENT_COMMAND.
With the first two values advance is either immediately or after completion of the command.
With the third value, if the same port number as in the previous function call is transferred,
the active function is aborted. The receivevariable parameter specifies the buffer in which the
receive data is stored.
When the _udpReceive function is called, the structure returned to the user program
contains the following parameters. The call status of the receive function can be queried in
the functionResult parameter. The sourceAddress parameter is an array that contains the IP
address of the S7 station. The sourceport parameter of the structure also contains the port of
the S7 station designated as local port. The number of received user data bytes after a
successful call of the _udpReceive function can be fetched in the datalength parameter.

5.7.4 S7 function blocks and SIMOTION functions for a TCP/IP connection when using
an S7 station with integrated Ethernet interface

5.7.4.1 Introduction
The following section describes the parameterization of the S7 function blocks and the
SIMOTION functions for a TCP/IP connection created for use with an S7 station with
integrated Ethernet interface.

5.7.4.2 S7 function blocks
Various function blocks and a UDT are available on the SIMATIC side for the communication
between a SIMATIC station with integrated Ethernet interface and a SIMOTION device. The
FB65 TCON is called to establish the connection. The FB66 TDISCON function block is used
to close the connection. The sending and receiving of data is performed using the FB63
TSEND and FB64 TRCV blocks.
For the communication between a SIMATIC station with integrated Ethernet interface and a
SIMOTION device, the connection is not configured in NetPro. Instead, the connection is
configured in the user program. On the SIMATIC side, this is implemented with data blocks
derived from UDT65 TCON_PAR (see figure below). This means that the data blocks must
contain the data structure from the UDT65.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
106 System Manual, 08/2008

Figure 5-15 Declaration view of the UDT65 TCON_PAR in the LAD/STL/FBD editor

The structure and parameterization of the UDT65 is described in detail in the following. In
principle, there are two cases for the parameterization of the UDT65 or the data block
derived from this:
1. The connection is established actively from the S7 station.
2. The S7 station passively waits for the connection to be established from the

communication partner.
Before the special parameterization of the two basic types is considered, the parameters and
their parameterization, which remain the same irrespective of the role of the S7 station
during the connection buildup, are described first.
The block_length parameter contains the length of a parameterization block and is
permanently set to 64. The parameter must not be changed.
The connection type is set via the connection_type parameter. The value 1 is entered
permanently. This means that the connection type is "TCP/IP native". This value must also
not be changed.
A further parameter that may not be changed and that is permanently assigned is
local_device_id. The value 2 (meaning Industrial Ethernet) must be entered here and must
not be changed. The rem_subnet_id_len and next_staddr_len parameters must be assigned
the value 0 and must also not be changed.
There are also the rem_subnet_id and next_staddr parameters and a reserved area
designated as spare. The parameters or reserved area are not relevant for the connection
buildup or the communication via a TCP/IP connection. However, the parameters or
reserved area should still be specified with 0 and the value should be retained.

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 107

The parameterizations depending on the connection buildup are now described separately in
the following.
● For 1:
If the active connection is to be established from the S7 station, the active_est parameter
must be set to TRUE. This specifies that the connection is to be actively established from the
S7 station.
The connection is assigned a unique number, the id parameter, that can be used to
reference this connection. This reference is required for the parameterization of the TCON,
TSEND, TRCV and TDISCON function blocks.
If the connection is actively established from the S7 side, the local port number is irrelevant.
Therefore, the local_tsap_id_len parameter is set to 0.
The rem_staddr_len parameter is set to 4, as a valid IP address can be expressed as four
numbers displayable with a byte - separated by a dot in written form.
The port number length of the communication partner (SIMOTION device) is specified in the
rem_tsap_id_len parameter. Because the port number can be displayed with two bytes, this
parameter is set to 2.
Because the port number on the S7 side does not play a role in this case and the
local_tsap_id_len parameter has the value 0, the local_tsap_id parameter does not have to
be assigned.
The rem_staddr parameter structured as an array of byte variables specifies the IP address
of the SIMOTION device. The first four bytes of the array are assigned. Whereby the
positions of the IP address are entered in the array from right to left in ascending order. This
means that the right number is entered as hexadecimal number in the first index of the array.
The second number from the right is then entered in the second index, etc.
To complete the parameterization, the port number of the SIMOTION device is specified in
the rem_tsap_id parameter, which is also structured as an array of byte variables. The first
index contains the low-order byte of the port number converted to a hexadecimal number.
The second index contains the high-order byte of the port number converted to a
hexadecimal number.
● For 2:
If no active connection is to be established from the S7 station, the active_est parameter
must be set to FALSE. This specifies that the connection is not to be actively established
from the S7 station.
Also in this case, the connection on the S7 side is assigned a unique number, the id
parameter, that can be used to reference this connection. The unique number is transferred
to the function blocks TCON, TSEND, TRCV and TDISCON during the function block call.
As already mentioned above, a port number can be displayed with two bytes. The local port
number on the S7 is relevant and therefore the local_tsap_id_len parameter must be set to 2.
As in the previous case a, rem_staddr_len is set to 4, because a valid IP address consists of
four numbers displayable with a byte - separated by a dot in written form.
The port number length of the communication partner (SIMOTION device) is specified in the
rem_tsap_id_len parameter. However, in this case, the port number on the SIMOTION side
is not relevant. For this reason, the rem_tsap_id_len parameter is set to 0.
The port number of the S7 station is entered in ascending order in the local_tsap_id
parameter - an array of byte variables. The first index contains the low-order byte of the port
number converted to a hexadecimal number. The second index contains the high-order byte
of the port number converted to a hexadecimal number.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
108 System Manual, 08/2008

The IP address of the SIMOTION device is specified in the rem_staddr parameter (an array
of byte variables). The first four bytes of the array are assigned. Whereby the positions of the
IP address are entered in the array from right to left in ascending order. This means that the
right number is entered as hexadecimal number in the first index of the array. The second
number from the right is then entered in the second index, etc.
Because the port number on the SIMOTION device side does not play a role in this case and
the rem_tsap_id_len parameter has the value 0, the rem_tsap_id parameter does not have to
be assigned.
Then follows the description of the function blocks with which a connection to a SIMOTION
device can be established or closed and with which data can be sent to or received from the
SIMOTION device.

CALL "TCON" , DB66
 REQ :=M1.0
 ID :=W#16#1
 DONE :=M2.0
 BUSY :=M3.0
 ERROR :=M4.0
 STATUS :=MW100
 CONNECT :=P#DB1.DBX0.0 BYTE 64

Call example of the FB65 (TCON) function block
If data is to be received from a SIMOTION device on an S7 station with integrated Ethernet
interface or data sent from an S7 station with integrated Ethernet interface to a SIMOTION
device, then first of all a connection between the S7 station and the SIMOTION device must
be established via the function block FB65 TCON.
The above program example shows a sample call to the FB65 TCON function block. The
connection buildup is controlled via the REQ parameter. If the parameter is set to 1 and
therefore an edge created, the data (connection description) from the area specified under
CONNECT is transferred to the function block in order to establish the connection.
A reference to the desired connection to be established is specified via the ID parameter.
The DONE, BUSY and ERROR parameters can be used to query the execution status of the
function block. In addition to the information that an error has occurred (ERROR = 1), the
user also receives detailed information about the type of error via the STATUS parameter.
As already mentioned above, the CONNECT parameter contains the addresses and length
of the connection description. This address refers to a data block area whose structure
corresponds to the UDT65.

Call "TSEND" , DB63
 REQ :=M5.0
 ID :=W#16#1
 LEN :=10
 DONE :=M6.0
 BUSY :=M7.0
 ERROR :=M8.0
 STATUS :=MW200
 DATA :=DB10.DBBO

Call example of the FB63 (TSEND) function block
Once a communication connection has been established, it can be used to send data from
the S7 station with integrated Ethernet interface to the SIMOTION device. This is performed
by calling the FB63 TSEND function block.

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 109

The transmission is activated with a rising edge at the REQ parameter. When called for the
first time, the data from the area specified with the DATA parameter is transferred to the
function block.
The ID parameter is used to reference the communication connection over which the data is
to be sent. The LEN parameter specifies the length of the data to be sent in bytes.
The DONE, BUSY and ERROR parameters also display the execution status of the function
block. In addition to the information that an error has occurred (ERROR = 1), the user also
receives detailed information about the type of error via the STATUS parameter.
As already mentioned above, the DATA parameter contains the address and length of the
send area.

CALL "TRCV" , DB64
 EN_R :=M8.0
 ID :=W#16#1
 LEN :=10
 NDR :=M9.0
 BUSY :=10.0
 ERROR :=11.0
 STATUS :=MW300
 RCVD_LEN :=MW310
 DATA :=DB20.DBB0

Call example of the FB64 (TRCV) function block
Data sent from a SIMOTION device can also be received on the S7 station with integrated
Ethernet interface via an established connection. The FB64 TRCV function block is called for
this purpose.
Receiving is controlled with the EN_R parameter. This means, if the EN_R parameter is
assigned the value 1, data can be received.
The ID is used to select a specific communication connection to be used to receive the data.
There are two principle parameterization settings for the LEN parameter. If the parameter is
assigned the value 0, the length of the expected receive data is implicitly specified via an
ANY pointer on the DATA block input. As soon as data is received, the data is provided in
the receive buffer and this is signalled via the NDR parameter. The length of the received
data can be taken from the RCVD_LEN parameter and it can also be less than the size
stored in the DATA parameter. If the LEN parameter is assigned a value other than 0, the
received data is temporarily stored in the receive buffer and only provided when the
configured length is reached. The NDR parameter also signals when the data has been
completely received.
The NDR parameter signals the partial or complete reception of data.
For receiving, the DONE, BUSY and ERROR parameters indicate the execution status of the
function block. In addition to the information that an error has occurred (ERROR = 1), the
user also receives detailed information about the type of error via the STATUS parameter.
The meaning of the RCVD_LEN parameter has already been explained above. If the LEN
parameter has been assigned the value 0, the RCVD_LEN parameter specifies the number
of data bytes contained in the most recently received data block. If a value other than 0 has
been assigned in the LEN parameter, the same value is present in RCVD_LEN.
The DATA parameter contains the address and length of the send area. The received data
can be taken from here for further processing.

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
110 System Manual, 08/2008

CALL "TDISCON" , DB66
 REQ :=M12.0
 ID :=W#16#1
 DONE :=M13.0
 BUSY :=M14.0
 ERROR :=M15.0
 STATUS :=MW400

Call example of the FB66 (TDISCON) function block
The FB66 TDISCON function block is used to close an existing connection. To close the
connection, the input parameter REQ is set to 1. The closing of the connection is therefore
triggered by the rising edge.
The ID parameter informs the function block which connection is to be closed. This
parameter specifies a reference to an already established connection defined by means of a
structure of type TCON_PAR.
The DONE, BUSY and ERROR parameters can be used to query the execution status of the
function block. In addition to the information that an error has occurred (ERROR = 1), the
user also receives detailed information about the type of error via the STATUS parameter.

5.7.4.3 SIMOTION functions
The same functions (_tcpopenclient, _tcpsend, _tcpreceive, _tcpcloseconnection,
_tcpopenserver, _tcpcloseserver) are used for this application case on the SIMOTION side
as described previously.
However, as already mentioned, the port numbers are not assigned in NetPro, but specified
by the user in the block or function parameterization.

5.7.5 Processing of TCP/IP data packets in the SIMOTION user program
A special feature of the communication via the TCP/IP protocol is that the data, even when
the maximum transferable data length has not been exceeded, is sent in individual packets
of unpredictable size.
On the S7 side, calling the FC6 (AG_RECV) or FC60 (AG_LRECV) function ensures that the
user data arriving in packets is provided to the user in the length specified during the function
call.
However, on the SIMOTION side, the function call _tcpReceive does not transfer the entire
data sent by the communication partner to the user all at once. The user must ensure that
the arriving data packets of unknown length are written to a separate buffer without gaps and
in the correct sequence.
The following flowchart shows a possible solution for the receipt in SIMOTION, with known
total data length ("specified data length") and unknown length of the individual data packets
(each corresponds to the "actual data length").

 Ethernet introduction (TCP/IP and UDP connections)
 5.7 Using the functions and function blocks in the user program

Communication
System Manual, 08/2008 111

Receipt at the SIMOTION end using _tcpReceive

Figure 5-16 Flowchart for receipt at SIMOTION end using _tcpReceive

Ethernet introduction (TCP/IP and UDP connections)
5.7 Using the functions and function blocks in the user program

 Communication
112 System Manual, 08/2008

Figure 5-17 Flowchart for receipt at SIMOTION end using _tcpReceive - continued

 Ethernet introduction (TCP/IP and UDP connections)
 5.8 Details of the SIMOTION TCP/IP system functions

Communication
System Manual, 08/2008 113

5.8 Details of the SIMOTION TCP/IP system functions

5.8.1 _tcpOpenServer function
The _tcpOpenServer function implements the server functionality of a TCP/IP connection.
Once it is called, _tcpOpenServer waits for the connection requests from the communication
nodes (clients) at the port specified by the "port" parameter.
The returned connectionId is required for the following write and read calls (_tcpSend,
_tcpReceive).
After this, the function is available again for the establishment of other connections. If no
further connection is to be established, the resources used by _tcpOpenServer can be
released again by calling _tcpCloseServer. This does not automatically close any previously
established connections; they have to be closed by calling _tcpCloseConnection.
The "backlog" parameter describes the maximum number of connection requests that the
server can backlog while processing a currently running connection request.
The function must have return value = 16#0 before the data transfer with TCP/IP can start.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcpOpenServer:StructRetTcpOpenServer
 (
 port :UINT,
 backlog :DINT,
 nectCommand :EnumTcpNextCommandMode
);

5.8.2 _tcpOpenClient function
The _tcpOpenClient function implements the client side of a TCP/IP connection. When the
function is called, there is a connection request to the server addressed by serverAddress
and serverPort. The returned connectionId is required for the following write and read calls
(_tcpSend, _tcpReceive).
The function must have return value = 16#0 before the data transfer with TCP/IP can start.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcpOpenClient:StructRetTcpOpenClient
 (
 port :UINT,
 serverAddress :ARRAY [0 ... 3] of USINT;
 serverPort :UINT;
 nextCommand :EnumTcpNextCommandMode
);

Ethernet introduction (TCP/IP and UDP connections)
5.8 Details of the SIMOTION TCP/IP system functions

 Communication
114 System Manual, 08/2008

5.8.3 _tcpReceive function
_tcpReceive waits for data at the active connection to the communication partner and
fetches this data. The function receives data via a connection previously established with
_tcpOpenServer or _tcpOpenClient. Data can be received in arbitrary packet sizes.
Generally the packet sizes do not correspond to that of the transmitting side.
(i.e. a send packet can be split up into several receive packets. However, several send data
packets can also be combined into one receive packet.)
The received data is available in the receiveVariable parameter in the datalength if the return
value in the function result = 16#0. At the next function call, the receiveVariable parameter is
overwritten in the datalength with new data.
Negative values in functionResult indicate an error in the data transfer. In this case, the
connection must be disconnected by calling _tcpCloseConnection.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcp_Receive:StructRetTcpReceive
 (
 connectionId :DINT,
 nextCommand :EnumNextCommandMode,
 receiveVariable :ARRAY [0 ... 4095] of BYTE
);

5.8.4 _tcpSend function
The _tcpSend function is used to send data to a communication partner via a connection
previously established with _tcpOpenServer or _tcpOpenClient.
Both clients and server can send data via the active connection.
With an asynchronous call (nextCommand = IMMEDIATELY), the function must be called
until it returns the value 0 (or a negative value in case of an error).
Negative values in functionResult indicate an error in the data transfer. In this case, the
connection must be disconnected by calling _tcpCloseConnection.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcpSend:DINT
 (
 connectionId :DINT,
 dataLength :UDINT,
 data :ARRAY [0 ... 4095] of BYTE

 nextCommand :EnumTxpNextCommandMode [IMMEDIATELY ⃒ WHEN_COMMAND_DONE]
);

 Ethernet introduction (TCP/IP and UDP connections)
 5.9 Details of the SIMOTION UDP system functions

Communication
System Manual, 08/2008 115

5.8.5 _tcpCloseConnection function
An active connection is closed by calling the function _tcpCloseConnection, which was
previously established _tcpOpenServer and _tcpOpenClient and thus releases the occupied
communication resources again.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcpCloseConnection:DINT
 (
 connectionId:DINT
);

5.8.6 _tcpCloseServer function
The _tcpCloseServer function terminates the waiting state for a connection request of a
communication partner (client) started with _tcpOpenServer.
The function may only be called in the BackgroundTask or in a MotionTask.

_tcpCloseServer:DINT
 (
 port:UINT
);

5.9 Details of the SIMOTION UDP system functions

5.9.1 Function _udpSend

Description
The _udpSend function sends a UDP (User Datagram Protocol) message frame to the
receiver identified by the IP address and port number.
At least the following data is required for sending:
● IP address of communication partner
● "Own" port number
● Port number of communication partner

Ethernet introduction (TCP/IP and UDP connections)
5.9 Details of the SIMOTION UDP system functions

 Communication
116 System Manual, 08/2008

Syntax

_udpSend :DINT
 (
 sourcePort :UINT;
 destinationAddress :ARRAY[0...3] of USINT;
 destinationPort :UINT;
 communicationMode :EnumUdpCommunicationMode
 [CLOSE_ON_EXIT |
 DO_NOT_CLOSE_ON_EXIT]
 (default setting: DO_NOT_CLOSE_ON_EXIT);
 dataLength : UDINT;
 data : ARRAY of Byte;
)

● The command is synchronous concerning the data transfer at the port, but not for the
communication.

● UDP is not a secured transfer protocol. You must program a feedback concerning the
success of the data transfer in the user program yourself.

For a detailed description of the transfer parameters, please refer to the SIMOTION system
documentation.

5.9.2 Function _udpReceive

Description
The _udpReceive function receives a UDP message frame at a port specified via a transfer
parameter.

Syntax

_udpReceive :StructRetUdpReceive
 (
 port :UINT; // (specification of the port to be read)
 communicationMode :EnumUdpCommunicationMode (cf. _readRecord)
 [CLOSE_ON_EXIT |
 DO_NOT_CLOSE_ON_EXIT]
 (default setting: DO_NOT_CLOSE_ON_EXIT);
 nextCommand :EnumNextCommandMode
 [IMMEDIATELY |
 WHEN_COMMAND_DONE |
 ABORT_CURRENT_COMMAND]
 (default setting: IMMEDIATELY);
 receiveVariable :ARRAY of BYTE;
)

 StructRetUdpReceive
 functionResult :DINT;
 sourceAddress :ARRAY[0...3] of USINT;
 sourcePort :UINT;
 dataLength :UDINT;
 END_STRUCT;

 Ethernet introduction (TCP/IP and UDP connections)
 5.9 Details of the SIMOTION UDP system functions

Communication
System Manual, 08/2008 117

The data is returned in the variable specified in "receiveVariable".
● You do not have to specify any commandID in the function, since the status of the data

transfer can be queried via the port.
● A call to the UDP functions from the IPO synchronous task should be avoided, in order to

prevent level overflow in case the IPO cycle has not been set too generously.
For a detailed description of the transfer parameters, please refer to the SIMOTION system
documentation.

Communication
System Manual, 08/2008 119

PROFINET IO 6
6.1 PROFINET IO overview

6.1.1 PROFINET IO
In machine construction, there is a clear trend toward distributed machine concepts and
mechatronic solutions. This increases the demands on the drive networking. A large number
of drives and shorter cycle times as well as the use of IT mechanisms are increasingly
gaining in importance.
The two successful solutions, PROFIBUS DP and Ethernet, are combined under PROFINET
IO. PROFINET IO is based on 15 years of experience with the successful PROFIBUS DP
and combines the normal user operations with the simultaneous use of innovative concepts
of the Ethernet technology. This ensures the smooth migration of PROFIBUS DP into the
PROFINET world.
PROFIBUS DP is a bus system. Only one node can access the bus at any one time (half-
duplex operation). With PROFINET IO a switching technology is implemented that allows all
stations to access the network at any time. In this way, the network can be used much more
efficiently through the simultaneous data transfer of several nodes. Simultaneous sending
and receiving is enabled through the full-duplex operation of Switched Ethernet. PROFINET
IO is based on Switched Ethernet full-duplex operation and a bandwidth of 100 Mbit/s.

More information
Detailed descriptions on the subject of PROFINET can be found in the System Manual
SIMATIC PROFINET System Description.

PROFINET IO
6.1 PROFINET IO overview

 Communication
120 System Manual, 08/2008

6.1.2 Application model
During the development of PROFINET IO, special emphasis was placed on the protection of
investment for users and device manufacturers. The application model is retained for the
migration to PROFINET IO. Compared with PROFIBUS DP, the process data view remains
unchanged for:
● I/O data (access to the I/O data via logical addresses)
● Data records (storage of parameters and data) and
● Connection to a diagnostic system (reporting of diagnostic events, diagnostics buffer)
This means that the familiar view for access to the process data is used in the user program.
Existing programming know-how can continue to be used. This also applies to device
profiles, such as PROFIdrive, which is also available with PROFINET IO.
The engineering view also has a familiar "look and feel". The engineering of the distributed
I/O is performed in the same way and with the same tools, as already used for PROFIBUS.

6.1.3 IO controller
The IO controller provides an IO system for the I/O data communication of the distributed
field devices. The IO controller is usually the communication interface of a SIMOTION
device, for example, in this case SIMOTION D with CBE30-PN. The function is comparable
to a PROFIBUS DP master class 1.

Figure 6-1 Examples of IO controllers and IO devices

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 121

6.1.4 IO device
Distributed field devices such as I/O, drives, e.g. SINAMICS S120 with CBE20-PN, or control
terminals are called IO devices. The function is comparable to a PROFIBUS DP slave.

See also
Creating an IO device (Page 157)

6.1.5 Sync domain

Description
A sync domain is a group of PROFINET devices synchronized to a common cycle clock. The
sync master sets the cycle clock. The sync slave synchronizes itself with the cycle clock set
by the sync master.

See also
Creating a sync domain (Page 149)

6.1.6 iDevice

Description
The functionality of an iDevice under PROFINET is comparable with that of an iSlave for
PROFIBUS. This means that a SIMOTION CPU can assume the role of an IO device and, as
a result, exchange data with a different IO controller.
Whereas for PROFIBUS an interface can be either only master or only slave, for PROFINET
it is possible to be concurrently both IO controller and IO device on the same PN interface.

See also
PROFINET iDevice (Page 169)

PROFINET IO
6.1 PROFINET IO overview

 Communication
122 System Manual, 08/2008

6.1.7 Addressing of PROFINET IO devices
A worldwide unique MAC (Media Access Control) address is used for the data exchange at
the hardware level. IP (Internet Protocol)-based services, such as HTTP (Web applications)
or FTP (file transfer), use IP addresses to address the devices. Both addresses are made up
of several bytes.
PROFINET therefore uses a unique device name (NameOfStation) to identify PROFINET
devices. The device name is a string that fulfills the requirements of a DNS (Domain Name
Service) name.
During the commissioning phase, each PROFINET device (identified via the MAC address)
is assigned a device name once via the configuration tool and this is stored retentively in the
PROFINET device (so-called node initialization). A device is referenced in the configuration
via the device name. If a device is replaced, e.g. because of a defect, the new device has
another MAC address. If it is initialized with the same device name as the replaced device
(e.g. by reconnecting a removable medium that stores the device name retentively), it can
take over the function of the replaced device without any changes in the configuration.
If configured, the IO controller automatically assigns each station a unique IP address via the
device name (so-called IP address assignment) during ramp-up. The station can then be
accessed via IP services. The IP address can be taken from a configured sequence of
numbers or configured individually. If you do not use the automatic IP address assignment,
you must assign an IP address to the IO device manually, see Assigning device names and
IP addresses to IO devices (Page 161) .

6.1.8 RT classes

6.1.8.1 RT classes for PROFINET IO

Description
PROFINET IO is a scalable realtime communications system based on Ethernet technology.
The scalable approach is expressed in two realtime classes.

RT
The RT communication is based on standard Ethernet. The data is transferred via prioritized
Ethernet message frames. For more detailed information, see PROFINET IO with
RT (Page 126).

IRT
Where the RT class is IRT, a distinction is made between two different formats: High
Flexibility and High Performance.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 123

IRT - High Flexibility
The message frames are exchanged in a bandwidth reserved by the hardware. The
bandwidth can only be reserved if the transmission network has been synchronized. One
IRT time interval and one standard Ethernet time interval are created for each cycle. For
more detailed information, see PROFINET IO with IRT (High Flexibility) (Page 128).

IRT - High Performance
In addition to the bandwidth reservation, a schedule for the cyclic message frames is
developed with consideration given to the topology. This results in even better data
exchange performance, as well as ensuring that cyclic data is transmitted in a precise and
deterministic manner for any kind of topology. The IRT time interval can thus be optimized or
minimized to a greater extent when compared with IRT High Flexibility.
In addition to transmission network synchronization, IRT even allows applications (position
control cycle, IPO cycle) to be synchronized in the devices (isochronous application). This is
an essential requirement for axis control and isochronous switching of inputs and outputs in
the network.
For more detailed information, see PROFINET IO with IRT (High Performance) (Page 129).

Comparing RT and IRT

Table 6-1 The major differences between RT and IRT

Property RT IRT (High Flexibility) IRT (High Performance)
.Transfer mode Prioritization of cyclic RT data

using Ethernet-Prio (VLAN
tag)

Bandwidth reservation, i.e.
reservation of a time domain
in which only cyclic RT data
(but no TCP/IP frames) are
transmitted

In addition to bandwidth
reservation, scheduling of cyclic
RT data with consideration given to
the topology

Determinism Variance of the transmission
duration for cyclic RT data
using TCP/IP message frames

Guaranteed transmission of
cyclic RT data within the
reserved IRT time interval

Transmission and receiving times
for cyclic RT data are precisely
defined and guaranteed for all
kinds of topologies.

Isochronous
application

Not supported Not supported Supported

Hardware support
using special
Ethernet controller

No Yes Yes

PROFINET IO
6.1 PROFINET IO overview

 Communication
124 System Manual, 08/2008

Table 6-2 Adjustable send clocks and update times

Scaling (update time = scaling * send clock) Send clock
RT
IRT High Flexibility

IRT High Performance

250, 500, 1,000 µs 1,2,4,8,16, 64,128,256,512
2,000 µs 1,2,4,8,16,32,64,128,256

"Even"
range

4,000 µs 1,2,4,8,16,32,64,128

1 Note 2)

"Odd"
range

375, 625, 750, 875, 1,125, 1,250 µs
... 3,875 µs
(increment 125 µs)

Not supported 1

Note 1) Mixed operation, RT/IRT High Performance
Odd send clocks can only be used if there is no RT or IRTflex IO device in the IO systems
involved in the sync domain. If there are IO devices with RT class "RT" in a sync domain, it is
only possible to set send clocks from the "even" range.
Note 2) Scaling and isochronous applications
With IRT High Performance, some IO devices support scalings 2, 4, 8, and 16, as well as
scaling 1.
Where IO devices (e.g. ET200S IM151-3 PN HS, SINAMICS S) are operated with an
isochronous application, it is usually only possible to set scaling 1.
In these cases, the mode for the update time must always be set to "fixed factor" to ensure
STEP 7 does not automatically adapt the update time to always match the send clock.
Please refer to the image below.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 125

Set RT class
The IO controller determines which RT class its IO system supports, by setting the real time
class at its controller interface. If IRT High Performance is set, it is not possible to operate
any devices with IRT High Flexibility on the IO controller, and vice versa. RT devices can
always be operated, even if IRT classes are set.
You can set the RT class in the HW Config for the associated PROFINET device.
1. Double-click the PROFINET board entry in the module in HW Config.

The Properties dialog box is called.

2. Select the realtime class for RT class in the Synchronization tab.
3. High Flexibility and High Performance can be selected as options.
4. Click OK to confirm.

PROFINET IO
6.1 PROFINET IO overview

 Communication
126 System Manual, 08/2008

6.1.8.2 PROFINET IO with RT
PROFINET IO with RT is the optimal solution for the integration of I/O systems without
particular requirements in terms of performance and isochronous mode. This is a solution
that also uses standard Ethernet in the devices and commercially available industrial
switches as infrastructure components. A special hardware support is not required.

Not isochronous
Because standard Ethernet does not support any synchronization mechanisms, isochronous
operation is not possible with PROFINET IO with RT!
The realtime capability is comparable with the present PROFIBUS DP solutions with 12
MBaud, whereby a sufficiently large bandwidth portion is available for the parallel
transmission of IT services on the same line.
PROFINET IO message frames have priority over IT message frames in accordance with
IEEE802.1Q. This ensures the automation technology has the required real-time properties.

Data exchange
Communication is possibly only within a network (subnet).

Refresh time
The adjustable update time is in the range of 0.25 - 512 ms. The real refresh time depends
on the bus load, the devices used and the quality structure of the I/O data. The refresh time
is a multiple of the send clock.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 127

6.1.8.3 PROFINET IO with IRT - Overview

Overview
PROFINET IO with IRT distinguishes itself through the separate time domains for IRT as
well as RT and TCP/IP communication. This is guaranteed by highly precise hardware-
supported cycle monitoring.

Figure 6-2 IRT Communication - Overview

For PROFINET IO with IRT, all devices must be synchronized on a shared sync master. The
sum of all synchronized devices form a sync domain.
PROFINET IO with IRT is available in two versions:
● IRT High Flexibility (Page 128) with fixed bandwidth reservation.
● IRT High Performance (Page 129) with fixed bandwidth reservation and scheduled IRT

communication
What is possible for PROFIBUS DP with equidistant bus cycles and isochronous operation is
also possible for PROFINET IO with IRT High Performance.
In PROFIBUS DP, all nodes are synchronized in isochronous mode via a global control
message frame generated by the DP master.

 Note
Equidistance and isochronous mode is not possible for PROFINET IO with IRT High
Flexibility.

In PROFINET IO with IRT High Performance and IRT High Flexibility, a sync master
generates a synchronization message to which all sync slaves synchronize themselves. The
synchronization mechanisms are performed by the communication ASIC. This ensures a
synchronization accuracy of less than one microsecond. Synchronization of all PROFINET
devices with IRT High Performance on a common time base is a requirement for scheduled
communication control, bandwidth reservation, and isochronous mode.
The sync master and sync slave device roles are assigned by the user during the
configuration. The role of a sync master can currently only be assigned to a IO controller.

PROFINET IO
6.1 PROFINET IO overview

 Communication
128 System Manual, 08/2008

Sync master and sync slaves belong to a sync domain which is assigned a name via
configuration. A sync domain has exactly one sync master.
A sync domain can consist of both PROFINET devices with IRT High Performance and
PROFINET devices with IRT High Flexibility. There may also be PROFINET devices with RT
at the ends of a line, but not between two PROFINET IO devices with IRT (High Flexibility or
High Performance). otherwise scheduled communication is not possible.

Compatibility
Communication between and through different sync domains via PROFINET IO with RT is
possible. If no topology has been configured, it is not necessary to observe a topology when
assembling the devices. This is not the case for IRT, where devices must connected one to
another according to the configured topology.
A line containing PROFINET devices with IRT High Flexibility or IRT High Performance must
not be interrupted by a PROFINET device with RT, as communication with IRT High
Performance or IRT High Flexibility would be impossible.

6.1.8.4 PROFINET IO with IRT (High Flexibility)

Description
For PROFINET IO with IRT (High Flexibility), the largest IRT bandwidth requirement of a
device plus a reserve for the complete network is reserved. It is not defined when which
message frame in the IRT time window over which port will be transferred.

Figure 6-3 Overview of communication with IRT (High Flexibility)

Send clock
0.5, 1.0, 2.0 and 4.0 ms can be selected as send clock.

 Note
Isochronous applications are supported with IRT (High Performance) only.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 129

6.1.8.5 PROFINET IO with IRT (High Performance)
The performance capability of motion control applications is significantly increased with
PROFINET IO IRT (High Performance). A hardware support enables a significant increase in
performance compared with the present field bus solutions. By scheduling the message
frame traffic for IRT High Performance, data traffic is considerably more optimized when
compared with IRT High Flexibility.
IRT (High Performance) is particularly suitable for:
● The control and synchronization of axes via PROFINET IO
● A fast, isochronous I/O integration with short terminal-terminal times

Send clock
All cyclic and acyclic data (IRT High Performance data) is transmitted within this time.
Acyclic data is NRT data. The send clock of 250 µs (P350) - 4 ms is the maximum range in
which the send clock can be set. The actual send clock that can be set depends on various
factors:
● Bus load
● Type of devices used
● Computing power available in the controller
● Supported send clocks in the participating PROFINET devices of a sync domain
A typical send clock is, for example, 1 ms. However, it can be set in a 125 µs grid within the
limits of 250 µs to 4 ms.
The supported send clocks can be found in the corresponding manuals of the respective
SIMOTION devices. A minimum cycle time of 250 µs is only supported by selected
components (SIMOTION P350-3 and the fast ET 200S modules).

Isochronous application
In addition, a high-performance and isochronous connection to the application with low load
on the application CPU is ensured. Isochronous data transfer with cycle times well below
one millisecond and with a deviation in the cycle start (jitter) of less than a microsecond
provide sufficient performance reserves for demanding motion control applications.
In contrast to standard Ethernet and PROFINET IO with RT, the transmission of message
frames for PROFINET IO with IRT High Performance is scheduled.

Time-scheduled data transmission
Scheduling is the specification of the communication paths and the exact transmission times
for the data to be transferred. The bandwidth can be optimally utilized through
communication scheduling and therefore the best possible performance achieved. The
highest determinism quality is achieved through the scheduling of the transmission times
which is especially advantageous for an isochronous application connection.

PROFINET IO
6.1 PROFINET IO overview

 Communication
130 System Manual, 08/2008

Data exchange
TCP/IP communication is generally also possible via network limits using routers. However,
PROFINET IO with IRT High Performance and PROFINET IO with IRT High Flexibility only
run within a sync domain.

6.1.9 Topology

General
Below, you will find an overview of various options for setting up a PROFINET network with
SIMOTION.

Table 6-3 Possible topology for SIMOTION

Topology
Star If you connect communication nodes to a switch,

you automatically create a star-shaped network
topology.
If an individual PROFINET device fails, this does
not automatically lead to failure of the entire
network, in contrast to other structures. Only the
failure of a switch causes the failure of part of the
communication network.

Tree If you interconnect several star-shaped
structures, you obtain a tree network topology.

Linear All the communication nodes are connected in
series as a bus.
If a coupling element (e.g. switch) fails,
communication downstream of the failed coupling
element is no longer possible. The network is
then divided into two subsegments.
In PROFINET, the linear topology is implemented
by switches that are already integrated in the
PROFINET devices. Therefore, the linear
topology in PROFINET is simply a special form of
the tree-/star-shaped structure.
Linear network structures require the least
amount of cabling.

Production topology examples
The following example shows various topologies combined.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 131

General information on optimization
PROFINET allows you to set up communication with both high-performance and a high
degree of uniformity. By keeping to the following guidelines, you can improve performance
even further.
1. Connect a router or a SCALANCE S between the office network and PROFINET system.

Use the router to define access privileges for your PROFINET system.
2. Where possible, set up your PROFINET system star-shaped (e.g. in the control cabinet).
3. Keep the interconnection depth of the switches as low as possible. This increases clarity

of your PROFINET system architecture.
4. Connect your PG/PC close to the communication partner (e.g.: PG and communication

partner connected to the same switch).

Sample topology - company network - production network

Figure 6-4 Optimized Topology

PROFINET IO
6.1 PROFINET IO overview

 Communication
132 System Manual, 08/2008

 Note
Further information on commissioning as well as on the topology structure can be found in
the SIMOTION commissioning manuals of SIMOTION D and SIMOTION P.

Configuration
Prerequisite for the communication scheduling is knowledge of the network topology. This
includes information on the interconnection of the individual devices to form a
communication network. Of importance are also the delay times through the transmission on
the Ethernet cables between the switches and the delay times in the switches. The cable
propagation times must be taken into account in the topology configuration.
Since no congestion situations can occur in the switches because of the communication
scheduling, the retention time in PROFINET devices with IRT High Performance is constant.
This is a device characteristic which is described in the GSD file. The topology scheduling is
only relevant for IRT High Performance.
The network topology can be configured for ease of use with the aid of a topology editor
integrated in the hardware configuration.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 133

6.1.10 Isochronous applications with PROFINET
As with PROFIBUS, the application can also be synchronized to the transmission network's
cycle clock with PROFINET.

Proceed as follows
When configuring isochronous applications, proceed as follows:
1. Set "IRT High Performance" on the controller and devices.

PROFINET IO
6.1 PROFINET IO overview

 Communication
134 System Manual, 08/2008

2. Set the refresh time mode on the devices to a fixed factor.

3. Activate the "Operate IO device/application in isochronous mode" checkbox on the
devices.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 135

6.1.11 Cycle clock scaling

6.1.11.1 Cycle clock scaling with PROFINET IO on SIMOTION devices

Description (PROFINET IO with IRT High Performance)
An isochronous application (e.g. position controller) on an IO controller must be
synchronized with the send clock of the data transferred by IRT High Performance. It can,
however, be synchronized with a multiple of the send clock of the data. This multiple is
designated as CACF (Controller Application Cycle Factor). The clock cycle scaling is set on
the servo for PROFIBUS (set system clocks).
Example: The data on the network is transferred with a send clock time of 1 ms. However,
because the servo should run with 2 msec, Therefore, the CACF must be equal to 2 and set
on the corresponding drive.

 Note
Equidistance and isochronous mode is not possible for PROFINET IO with IRT High
Flexibility.

The CACF is set on the IO device, see e.g. Inserting and configuring the SINAMICS
S120 (Page 159).

Description
Scaling to the send clock with SIMOTION controllers is possible in the case of PROFINET
with IRT High Performance under the following conditions:
● The SINAMICS Integrated of a D4xx and an isochronous DP master interface always run

simultaneously to the servo cycle clock.
● For a SIMOTION P350 the isochronous DP master interface always runs simultaneously

with the servo cycle clock.
● When a SIMOTION D drive (e.g. a SINAMICS S120) runs scaled to a send clock in the

servo cycle clock, the servo cycle clock can extend across n send clocks (n = scaling of
the servo to the send clock), and must not be completely processed within the send clock
time.

The following general conditions apply to cycle clocks and cycle clock scalings for a SIMOTION
controller

● If IRT High Performance data is configured for a SIMOTION device, the PROFINET
interface is always the cycle clock source in the system, which means the servo cycle
clock is synchronized with the send clock. If IRT High Performance is configured for the
SIMOTON device, but no cyclic data is created, the servo cycle clock runs
asynchronously in relation to the send clock. For example:
– Only TCP/IP via PROFINET interface
– Only RT devices on the PROFINET interface
– PROFINET interface, only router for IRT High Performance data to other devices

PROFINET IO
6.1 PROFINET IO overview

 Communication
136 System Manual, 08/2008

Combinations of cycle clocks and cycle clock sources for PROFIBUS and PROFINET IO
● Servo can be scaled in integral multiples (1, 2, ...n) of the send clock.
● Cycle clocks for SINAMICS Integrated and isochronous DP master interfaces must run

simultaneously with the servo cycle clock.

6.1.11.2 Cycle clock scaling for IO accesses

Description
The following must be observed for cycle clock scaling (PROFINET and PROFIBUS):
● At the end of a IPOSynchronousTask, the process image is output with the next possible

servo (Data Out) (= response-time-optimized). In case the servo clock cycle is scaled to
the IPO clock cycle, this can lead to the data being output one/several servo clock cycles
earlier or later within an IPO clock cycle, if the IO accesses are performed via the
IPOSynchronousTask.

● At the end of the servo priority class, the process image of the ServoSynchronousTask is
output with the next possible bus clock cycle (= response-time-optimized).

● For PROFINET and with PROFINET cycle clock scaled to the servo cycle clock, this can
lead to the data to be output one/several bus clock cycles earlier or later within the servo
clock cycle, if the IO accesses are performed via the ServoSynchronousTask and the
runtime of the servo priority class fluctuates over one bus clock cycle.

● For PROFIBUS, the data is always output with the first bus clock cycle, since the servo
priority class must always be finished with the first bus clock cycle. In case of a different
runtime of the servo priority class in the individual cycles, the terminal-terminal time may
vary as a result.

If an always constant response time is to be achieved instead of a response-time-optimized
behavior, the following must be set:
● For PROFIBUS:

– A reduction ratio servo: IPO = 1 : 1 so that the I/O accesses from the
IPOSynchronousTask are always implemented in isochronous mode.

– Comment: IO accesses from the ServoSynchronousTask are always isochronous for
PROFIBUS

● For PROFINET:
– A reduction ratio bus clock cycle: Servo: IPO = 1 : 1 : 1 so that the I/O accesses from

the IPOSynchronousTask are always implemented in isochronous mode
– A reduction ratio bus clock cycle: servo = 1 : 1 so that the I/O accesses from the

ServoSynchronousTask are always implemented in isochronous mode

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 137

6.1.11.3 Bus cycle clocks that can be adjusted for cycle clock scaling to SIMOTION devices

Overview of the possible bus cycle clocks

 PROFIBUS PROFINET
IRT High Performance

PROFINET
IRT High Performance

Servo

 Minimum Minimum Maximum Minimum
SINAMICS S120
CU320

1 ms 0.5 ms 4.0 ms 0.5 ms

SINAMICS S120
CU310

1 ms 0.5 ms 4.0 ms 0.5 ms

C230-2 1.5 ms - - 1.5 ms
C240 PN 0.5 ms 4.0 ms 0.5 ms
C240 DP 1 ms
D410 1 ms 0.5 ms 4.0 ms 2.0 ms
D425 1 ms 0.5 ms 4.0 ms 1.0 ms
D435 1 ms 0.5 ms 4.0 ms 1.0 ms
D445 1 ms 0.5 ms 4.0 ms 0.5 ms
P350-3 1 ms 0.25 ms 4.0 ms 0.25 ms

Cycle clock scaling with PROFINET IO

Task Servo IPO IPO2
 Min Max Min Max Min Max
Cycle clock 1 x bus 16 x bus 1 x servo 6 x servo 2 x IPO 64 x IPO

6.1.12 Connection between sync domain and IO systems
It is important that sync domains do not need to be restricted to a single PROFINET IO
system. The devices of several IO systems can be synchronized by a single sync master,
provided they are connected to the same Ethernet subnet and belong to a sync domain.
Conversely, an IO system may only belong to a single sync domain.

PROFINET IO
6.1 PROFINET IO overview

 Communication
138 System Manual, 08/2008

6.1.13 Redundant sync master

Description
You can use two sync masters for isochronous operation with IRT High Performance in a
sync domain (primary and secondary sync master). At any one time, only one sync master
can be used for the synchronization of the sync slaves.
The switch is performed as soon as the primary sync master fails. If both sync masters are
operational, the sync master configured as primary handles the synchronization of the sync
slaves.

Limitations of use
If the transmission link between the primary and secondary sync master fails, so that there
are 2 subnets with one sync master each, both subnets remain synchronized with the
corresponding remaining sync master. As a result, there are two independent synchronized
subnets that drift apart due to the temperature drift of the quartzes. Once the data
transmission link has been reestablished, no smooth switching to the primary sync master is
possible, i.e. the drives in the network would lose the synchronization and fail for a short
time, since a renewed synchronization is necessary due to the temperature drift.

Configuring the second sync master
1. Add a second SIMOTION module and configure PROFINET to satisfy your requirements.
2. Right-click with the mouse on the PROFINET board to open the Properties - <PROFINET

board> -- (R0/S2.6) dialog.
3. Select the Sync master (redundant) entry under Synchronization type on the

Synchronization tab.

 PROFINET IO
 6.1 PROFINET IO overview

Communication
System Manual, 08/2008 139

Figure 6-5 Configuring the second sync master

6.1.14 Quantity structures
The following maximum values apply for IO controllers of the SIMOTION platform
(SIMOTION D and SIMOTION P):
● Connection of up to 64 IO devices.
● Up to 64 controller-controller data exchange broadcast relationships may be set up

between IO controllers

Mixed operation of IO devices and controller-controller data exchange broadcast
You can calculate the possible number of devices in mixed operation using the following
formula:
(RT/IRT High Flexibility IO device) + (IRT High Performance IO
device) <= 64
and at the same time
(IRT High Performance IO device) + data exchange broadcast frame
consumer <= 64

PROFINET IO
6.1 PROFINET IO overview

 Communication
140 System Manual, 08/2008

 Note
In a data exchange broadcast relationship, it is not the number of lines in the lug receiver
(see Configuring the receiver (Page 168)) that is intended for IRT High Performance data
exchange broadcast configuration, but rather the number of Ethernet frames received for the
data exchange broadcast.
Each provider sends their data exchange broadcast data in an Ethernet frame. Any other
SIMOTION can read this data in this frame. This means there is a counting connection to
each transmitting SIMOTION.

During the compilation of the project, HW Config verifies the configured quality structure
based on the formulas mentioned above.

Address space
A maximum of 4 KB each may be assigned for PROFINET IO data for the input and output
data in the logical address space of an IO controller. The rest of the 16 KB large address
space can be used, for example, for PROFIBUS data or diagnostics data

6.1.15 Acyclic communication via PROFINET

Description
Similarly to PROFIBUS DP, it is also possible for PROFINET IO to operate acyclic
communication (Base Mode Parameter Access). You will find a detailed description hereof
under DP V1 communication (Page 34).

 PROFINET IO
 6.2 Specific properties of PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 141

6.2 Specific properties of PROFINET IO with SIMOTION

6.2.1 Introduction

Requirement
For it to be possible to work with SIMOTION using PROFINET IO, either the CBE30 option
board must be inserted in the option slot of the SIMOTION D 4x5 devices, or a SIMOTION
P350 PN, SIMOTION D410 PN, or C240 PN must be used.
PROFINET devices support the simultaneous operation of:
● IRT High Performance or IRT High Flexibility - Isochronous Realtime Ethernet

– Operation of IRT peripherals (e.g. ET200S)
– Operation of a SINAMICS S120 as an IO device

● RT - realtime Ethernet
– Operation of RT - peripherals (e.g. ET 200S, ET 200pro)
– IE/AS-Interface link PN IO for the PROFINET IO gateway to AS-Interface
– SINAMICS as PROFINET IO with an RT device

● TCP/IP, UDP, HTTP, … standard Ethernet services

 Note
For mixed operation of IRT High Performance and RT, or IRT High Flexibility and RT, it
must be ensured that the IRT-compatible (High Performance or High Flexibility) devices
form a sync domain. In other words, there must not be any non-IRT (High Performance or
High Flexibility) PROFINET devices on the transmission link between the PROFINET
devices with IRT (High Performance or High Flexibility).

 Note
With SIMOTION SCOUT, it is possible to access a maximum of 10 PROFINET nodes
ONLINE simultaneously.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
142 System Manual, 08/2008

6.3 Configuring PROFINET IO with SIMOTION

6.3.1 New to SIMOTION V4.1.2

Description
New hardware, in which a new synchronization process has been implemented, is being
introduced into SIMOTION V4.1.2. The synchronization process used up until this point is,
however, still supported. The old synchronization process will continue to be used as
standard. This is offered as an option in HW Config with IRT* .
If you wish to work with the new synchronization process, you must first upgrade the
SIMOTION firmware. The relevant data set can be found on the Utilities CD.
The new synchronization process offers both IRT versions (IRT High Performance and IRT
High Flexibility), with the old IRT*continuing to be supported.

6.3.2 Proceed as follows for configuring PROFINET IO

Procedure
To configure PROFINET IO you must perform the following steps:
1. Insert the SIMOTION module.

– SIMOTION P350 PN, SIMOTION D410 PN and C240 PN can be selected and
inserted.

– For SIMOTION D4x5, you must drag the CBE30 module from the hardware catalog in
HW Config and drop it onto the corresponding interface of the SIMOTION module.

2. Insert IO devices: Insert IO devices from the hardware catalog in HW Config into the I/O
system.

3. Create the topology: Specify the topology, i.e. how the individual ports of the PROFINET
IO devices are interconnected one to another.

4. Configure the sync domain: Define which PROFINET IO nodes are sync master (clock
generator) or sync slave.

5. Specify the send clock: Describes the time within which a PROFINET IO device
exchanges the user data with the PROFINET IO controller.

6. Controller-controller cross-traffic: Specify which address areas are to be used for sending
and receiving, respectively.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 143

6.3.3 Adding and configuring a CBE30-PROFINET board

Requirement
You have created a project and have already inserted a SIMOTION device.
A PROFINET interface does not have a valid IP address when delivered. Therefore, you
must assign an IP address (node initialization) and load it into the module.

Proceed as follows
1. In the project navigator, double-click the module (in this case D445). HW Config is

displayed with the corresponding module.
2. In the hardware catalog, click the module entry, e.g. SIMOTION D445.
3. Click the entries for the order number and the version.

The PROFINET module CBE30-PN is displayed below the version. As soon as the
CBE30-PN is selected, X1400 becomes green.

4. Drag the CBE30-PN to the corresponding interface of the SIMOTION module (X1400).
The Properties - Ethernet Interface CBE30-PN (R0/S2.6) window opens.

5. Click New to create a new subnet. The Properties – New subnet Industrial Ethernet
dialog box is displayed. The subnet ID is preselected.

6. Click OK to confirm these entries. A new Ethernet subnet is created, e.g. Ethernet(1).

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
144 System Manual, 08/2008

7. Select the subnet.
8. Assign the desired IP address.
9. Accept the settings by clicking OK.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 145

6.3.4 Inserting and configuring P350

Requirement
You have already created a project and now want to insert a P350 with PROFINET.
A PROFINET interface does not have a valid IP address when delivered. Therefore, you
must assign an IP address (node initialization) and load it into the module.

Proceed as follows
1. Click Create new device to open the device selection dialog box.
2. Select the used variant of the P350 (i.e. P350 PN or P350 DP/PN), then click OK to

confirm.

3. The dialog box for creating a PROFINET subnet will be displayed. Enter the IP address

and the subnet mask here. Click OK to confirm.

4. Select the PG/PC interface from the next dialog box and click OK to confirm.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
146 System Manual, 08/2008

The HW Config opens and displays the module with the configured PROFINET subnet.

Figure 6-6 HW Config with PROFINET for P350

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 147

6.3.5 Inserting and configuring the C240

Requirement
You have already created a project and now want to insert a C240 with PROFINET.
A PROFINET interface does not have a valid IP address when delivered. Therefore, you
must assign an IP address (node initialization) and load it into the module.

Procedure
1. Click Create new device to open the device selection dialog box.
2. Select the version of the C240 PN in use and click OK to confirm.

Figure 6-7 Creating a new C240 PN device

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
148 System Manual, 08/2008

3. The dialog box for creating a PROFINET subnet will be displayed. Enter the IP address
and the subnet mask here. Click OK to confirm.

Figure 6-8 Creating a new Ethernet for C240 PN

4. Select the PG/PC interface from the next dialog box and click OK to confirm.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 149

The HW Config opens and displays the module with the configured PROFINET subnet.

Figure 6-9 HW Config with PROFINET for C240 PN

6.3.6 Creating a sync domain
A sync domain is a group of PROFINET devices synchronized to a common cycle clock.
Exactly one device has the role of the sync master (clock generator), all other devices have
the role of a sync slave.

 Note
All components that exchange data via IRT must belong to a single sync domain.
Operation steps 3 and 4 are skipped when the preset sync domain is kept.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
150 System Manual, 08/2008

Proceed as follows
1. In HW Config, open the station with PROFINET devices which are to take part in the IRT

communication.
2. Select the Edit > PROFINET IO > Domain Management menu command. A dialog tab

with the list of all devices supporting synchronization is opened. A default sync domain is
created and the devices are already assigned.

3. Click New to create a new sync domain.
4. Click Add to assign the device concerned to the sync domain.
5. Select the station in the upper field and in the lower field double-click the device that is to

be configured as sync master, e.g. CBE30. The Properties dialog box of the device
opens.

Figure 6-10 Selecting synchronization

6. Set the synchronization type to sync master.
7. Confirm the settings with OK.
8. Then, select all devices, first in the upper field then in the lower field, which are to be

configured as sync slaves (keep the Ctrl key pressed and select the devices one after the
other).

9. Then, click on the Properties device button.
10. Set the synchronization type to Sync slave in the dialog box.
11. Confirm the settings with OK.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 151

 Note
Any devices for which not synchronized is selected will not be involved in IRT
communication, but will automatically take part in RT communication.

 Note
A second sync master can be inserted for media redundancy (secondary sync master).

6.3.7 Configuring a topology

6.3.7.1 Topology

Introduction
Topology configuration is a requirement for communication scheduling of IRT High
Performance.

 Note
You must only interconnect IRT High Performance devices via ports. Devices operated with
IRT High Flexibility or RT must not be connected in this way. A topology can be configured
for IRT High Flexibility: when present, this is also monitored. However, this is not a
requirement for operating IRT High Flexibility.

There are two options for defining the properties of the cables between the ports of the
switches:
Using the topology editor (Page 152)
Using the object properties (Page 154)

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
152 System Manual, 08/2008

6.3.7.2 Interconnecting ports via the topology editor

Proceed as follows
With the topology editor you have an overview of all ports in the project and can interconnect
them centrally.
The topology editor is started with the Edit > PROFINET IO > Topology menu command in
HW Config or NetPro (PROFINET device must be selected).

Figure 6-11 Topology editor

All configured PROFINET IO devices with their ports are listed in the interconnection table
on the left-hand side. You can use the Filter dialog to select whether all ports, only the ports
that have not yet been interconnected or only the ports that have already been
interconnected are to be displayed.
To interconnect ports of different devices, select the port of a device that you want to
interconnect in the right-hand field. Drag this port to the desired port of a device in the
interconnection table. The following dialog box then opens:

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 153

Figure 6-12 Properties - Topology

The port interconnection is displayed: You can configure the cable data: A cable length <
20 m is set by default. Alternatively, you can configure the signal propagation delay:
● Confirm your entries with OK.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
154 System Manual, 08/2008

6.3.7.3 Interconnecting ports via object properties
Alternatively, a partner port can be selected via the properties of a port. Thus, the cable
between two ports is defined and the properties of this cable can be edited.

Proceed as follows
1. The dialog box is opened in HW Config by selecting a port on the module and selecting

the Edit > Object properties menu command or double-clicking on the port.

Figure 6-13 Object properties Topology

2. Then, select the Topology tab in the Properties port... dialog.
3. In the Partner port list, select the port with which you want to interconnect the device.
4. Confirm your entries with OK.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 155

6.3.7.4 Topology editor (graphical view)

Description
In addition to the tabular view of the topology, you can also use a graphical view (from
STEP7 V5.4 SP2). Some of the tasks you can perform in this view:
● Interconnect ports
● Modify the properties of the interconnection
● Add passive components

Proceed as follows
1. In SCOUT, double-click the SIMOTION module in order to access HW Config.
2. Select the PROFINET module, e.g. a CBE30-PN.
3. Perform Edit > PROFINET IO > Topology. The topology editor opens.
4. Click Graphical view to bring the tab into the foreground.

Figure 6-14 Topology editor (graphical view)

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
156 System Manual, 08/2008

6.3.8 Defining send clock and refresh times
The refresh time applies to all devices that participate not synchronized (with RT class: RT)
in the PROFINET IO system.
The send clock defines the period between two consecutive intervals for IRT (High
Performance and High Flexibility) or RT communication. This applies to all devices in a sync
domain.

How to set the send clock
1. In HW Config, open the Domain Management dialog box.

Figure 6-15 Domain Management

2. Select a suitable send clock. The transmission cycle clock is the smallest possible
transmission interval. The send clock is preset to 1 ms.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 157

Defining update times for PROFINET IO using PROFINET devices with RT
Update times for IO data exchange of PROFINET IO using PROFINET devices with RT are
set in the Properties PROFINET IO System dialog box.
1. Select the device for which you want to set refresh times.
2. Click Edit. You can select the refresh time in the Edit refresh time dialog.

3. Confirm the settings with OK.

6.3.9 Creating an IO device

Requirement
You have already created a PROFINET IO system and configured a PROFINET IO module,
e.g. SIMOTION D445 with CBE30-PN.

Procedure for PROFINET IO devices using the hardware catalog
1. Double-click the corresponding module to open HW Config.
2. Under PROFINET IO in the hardware catalog, select the module you wish to connect to

the PROFINET IO system.
3. Drag the module to the path of the PROFINET IO system. The IO device is inserted.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
158 System Manual, 08/2008

4. Save and compile the settings in HW Config.

Procedure for third-party manufacturer PROFINET IO devices
1. Double-click the corresponding module to open HW Config.
2. Select the Options > Install GSD files menu command.
3. Select the GSD file to be installed in the Install GSD Files dialog box.
4. Click the Install button.
5. Close the dialog box by clicking the Close button.
6. Under PROFINET IO in the hardware catalog, select the module you wish to connect to

the PROFINET IO system.
7. Drag the module to the path of the PROFINET IO system. The IO device is inserted.
8. Save and compile the settings in HW Config.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 159

6.3.10 Inserting and configuring the SINAMICS S120

Requirement
You have inserted a SIMOTION device and a CBE30 in your project and a PROFINET IO
subnet has already been created.

 Note
Please note that for each parameter in the SIMOTION device in use, a setting must be made
specifying whether PROFINET V2.1 or PROFINET V2.2 is being used.

Proceed as follows
1. Select the module from the PROFINET IO > Drives > SINAMICS entry in the hardware

catalog, e.g. SINAMICS-S120-CBE20 (not GSD).
2. Click the entry of the PROFINET module SINAMICS S120 CBE20.
3. Drag the drive to the PROFINET IO subnet. The Properties - Ethernet Interface

SINAMICS-S120-CBE20 window opens.
A suggested IP address will already be displayed here and the subnet will be selected.

4. Click OK to accept the settings.
The dialog box Properties SINAMICS is displayed.

5. Select the device version (firmware version).

Figure 6-16 SINAMICS properties

6. Click OK to confirm these entries.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
160 System Manual, 08/2008

Set message frame
If you want to use isochronous communication, you must configure a message frame, with
which this is possible (e.g. message frame 105), as otherwise, for example, input fields Ti or
To in the Properties SINAMICS CBE20 PN-IO dialog box will not be active or empty.
In other words, if you want to configure in another message frame, proceed with the
following steps:
1. Select the inserted SINAMICS drive and double-click the entry SIEMENS / Standard

message frame xx in the lower table.
The Properties SIEMENS / Standard message frame xx dialog box is called.

2. Select the corresponding message frame. After it is saved, the message frame can be
also be selected in SCOUT in the project navigator under <"Drive_device_xx"> -
Configuration. Tuning with HW Config is possible.

Settings on the SINAMICS PROFINET interface
In order for the inserted SINAMICS S120 drive to run in isochronous mode in PROFINET, a
number of settings must be made on the SINAMICS.
1. Select the SINAMICS drive on the PROFINET IO system and double-click the entry of the

PROFINET interface in the lower table, e.g. CBE20-PN-IO.
The Properties CBE20-PN--IO dialog box is displayed.

2. Select the Application tab.

Figure 6-17 Properties SINAMICS CBE20 PN-IO

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 161

3. Click the entry Operate IO device/application in isochronous mode.
The drive now takes part in the isochronous communication.

4. If necessary, enter a value > 1 under Controller-application cycle, in order to configure
clock cycle scaling.

5. If necessary, switch to the Synchronization tab to select the Synchronization type, Sync
slave in this case. This can also be set under Domain Management.

6. Confirm the entries with OK.

 Note
During the next steps, you must include the drive in the sync domain (see Creating a
sync domain), load the IP address to the drive (see Assigning device names and IP
addresses to IO devices (Page 161)), and interconnect the ports (see Interconnecting
ports via the topology editor (Page 152)).

See also
Creating a sync domain (Page 149)

6.3.11 Assigning device names and IP addresses to IO devices

Requirement
A PG/PC is directly connected to the PROFINET device.

Introduction
For it to be possible to access an IO device ONLINE (e.g. a SINAMICS S120) the devices
must first be assigned an IP address. This is done via the so-called node initialization or IP
address assignment ONLINE on the device.

 Note
If you connect the PG/PC directly to the device's PROFINET interface, you do not require a
crossover cable.

As IP address, use the address you specified in the Properties - Ethernet Interface … dialog
box (can be opened by double-clicking the device). The default setting Assign IP address
through Controller is active. Moreover, a default name is entered that you can modify.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
162 System Manual, 08/2008

Figure 6-18 Properties SINAMICS S120

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 163

Proceed as follows
1. In HW Config, select the Target system - Ethernet - Edit Ethernet node menu item. The

Edit Ethernet node dialog box is displayed.

2. Click the Browse button.

PROFINET IO
6.3 Configuring PROFINET IO with SIMOTION

 Communication
164 System Manual, 08/2008

3. The Browse Network dialog box opens. The connected nodes are displayed.

4. To make sure that the selected node is the correct node, click the Flash button. The LED
then flashes on the selected device.

5. Click the device to be initialized and confirm with OK.
6. Enter the address you specified in the Properties – Ethernet Interface … dialog box.
7. Select No router used as the router.
8. Click the Assign IP configuration button. The IP address is then assigned to the device

online.
9. Enter the device name that you have defined in HW Config, see figure Properties

SINAMICS S120.
10. Click the Assign name button. The device name is assigned to the device.

 PROFINET IO
 6.3 Configuring PROFINET IO with SIMOTION

Communication
System Manual, 08/2008 165

As an alternative, you can perform node initialization in SIMOTION SCOUT.
You can also perform the node initialization in SCOUT.
● In SCOUT, execute Reachable nodes and, in the dialog box displayed, right-click the

device that you want to edit.
● Execute Edit Ethernet nodes. The corresponding dialog box is displayed.

Figure 6-19 Edit Ethernet nodes

● Enter a device name, a subnet mask and an IP address.
● Confirm your entries.
The device name and IP address are transferred to the device and stored there.

PROFINET IO
6.4 Configuring direct data exchange between IO controllers

 Communication
166 System Manual, 08/2008

6.4 Configuring direct data exchange between IO controllers

6.4.1 Introduction
I/O data areas can be exchanged cyclically between two or more SIMOTION controllers.
For the data exchange between SIMOTION controllers, the devices must be located in a
common sync domain and configured accordingly as sync master and sync slaves. Data
exchange is performed using IRT High Performance communication.

 Note
This function is not available for SIMATIC CPUs.

Recommendation
We recommend, initially configure the send areas for all PROFINET devices and then the
receive areas.

 PROFINET IO
 6.4 Configuring direct data exchange between IO controllers

Communication
System Manual, 08/2008 167

6.4.2 Configuring the sender

Proceed as follows
1. Open the Properties dialog of the PROFINET interface (double-click the corresponding

row in the configuration table of HW Config).
2. Select the Sender tab.

3. Click the New button.
4. Enter in the Properties dialog of the sender, the start address from the I/O area and the

length of the address area to be used for sending. Comment the data area so that you
will be able to identify the data transmitted via this area later on.

5. Confirm the settings with OK.
6. Repeat steps 3 to 5 for further send areas.
7. Change the preset diagnostics address for the send areas, if required.
8. Confirm your entries with OK.
A single diagnostics address must be assigned for the communication relationship in which a
PROFINET interface is the transmitter for direct data exchange.

PROFINET IO
6.4 Configuring direct data exchange between IO controllers

 Communication
168 System Manual, 08/2008

6.4.3 Configuring the receiver

Proceed as follows

1. Open the Properties dialog of the PROFINET interface (double-click the corresponding
row in the configuration table of HW Config).

2. Select the Receiver tab.
3. Click the New button.
4. Click the Assign sender button in the Properties receiver dialog.
5. In the Assign sender dialog, select the data area of the desired node which is to be

received by the local controller.
6. Confirm your selection with OK.
7. In the Properties dialog box of the receiver, enter the start address of the address area

via which the reception is to be implemented. The length of the address area should not
be changed as it is automatically adapted to the length of the send area. The
configuration can only be compiled if the send and receive areas have identical lengths!

8. Repeat steps 3 to 7 for further receive areas.
9. A diagnostics address is reserved for each assigned sender via which the receiver can

detect a failure of the sender.
10. Click the Diagnostics addresses button if you want to edit these addresses.

 PROFINET IO
 6.5 Configuring the iDevice

Communication
System Manual, 08/2008 169

11. Confirm your entries with OK.

6.5 Configuring the iDevice

6.5.1 PROFINET iDevice

iDevice description
The PROFINET iDevice functionality is comparable with that of the i-slave for PROFIBUS,
i.e. a SIMOTION controller can accept the role of an IO device and thus exchange data with
different IO controllers.
iDevices can, for example, be used in the process communication between SIMATIC and
SIMOTION devices or in modular machines.
For example, iDevices can be used for distributed synchronous operation: See the Function
Manual titled Motion Control Technology Objects: Synchronous Operation, Cam.

 Note
An iDevice can only be created using SIMOTION V4.1.1 or higher.

Properties of an iDevice
In this case, the following must be observed:
● If the IO device in the iDevice is operated with IRT, the IO controller in the iDevice can

only be operated with RT. In other words, if a SIMOTION controller is operated as an
iDevice with IRT on a higher-level controller, the SIMOTION controller can only operate
its lower-level IO devices with RT. The configuration data for ports, the synchronization
and the IRT scheduling data of the IO device in the iDevice are loaded from the higher-
level IO controller.

● If the IO controller in the iDevice is operated with IRT, the IO device in the iDevice can
only be operated with RT.

● The send clock of the IO device in the iDevice is the same as the send clock in the sync
domain of the higher-level IO system.

● The IO controller that is of a higher-level than the iDevice provides an IO system, in which
the iDevice is an IO device. The IO controller in the iDevice provides its own IO system.

PROFINET IO
6.5 Configuring the iDevice

 Communication
170 System Manual, 08/2008

The following figure shows how you can operate an iDevice with a higher-level IO controller.

Figure 6-20 Configuration possibilities with iDevices

Procedure for the configuring
● The iDevice itself and the higher-level station on which it is operated (IO controller)

should be contained in different projects in HW Config.
● Following successful configuration, a GSD file is generated from the iDevice by means of

an export from HW Config.
● Once the GSD file has been imported, a substitute iDevice is created on the higher-level

IO controller.
● Because no matching is performed on the configuration of the iDevice and of the

substitute iDevice, the configuration becomes inconsistent after one of the components
has been changed. It is also impossible to perform a consistency check as the iDevice is
imported via a GSD file.

6.5.2 Configuring a PROFINET iDevice

Requirement
You have already created a project and created a station with rack or a SIMOTION controller
in HW Config (SIMATIC Manager or SIMOTION SCOUT). You have already configured the
PROFINET IO system and now want to configure the iDevice.

 Note
When configuring the iDevice, observe the possible settings for the RT class, see
PROFINET iDevice (Page 169) .

 PROFINET IO
 6.5 Configuring the iDevice

Communication
System Manual, 08/2008 171

NOTICE
If you use a SIMOTION controller as higher-level IO controller, the device name of the
iDevice (NameOfStation) may not contain any "-". They will be changed into "x" when you
insert the iDevice in the IO system. Because the device name has then changed, you can
no longer control the iDevice in the PROFINET IO system.

Proceed as follows
1. Double-click the interface module of the CPU. The Properties dialog box opens.
2. Select the General tab and, if necessary, change the device name (without any "-").

PROFINET IO
6.5 Configuring the iDevice

 Communication
172 System Manual, 08/2008

3. Select the iDevice tab.

4. Select the iDevice mode.
5. Select whether the Parameterization of the PN interface and of its ports on higher-level

IO controller should be performed.
You can thus operate communication between the higher-level controller and the
controller in the iDevice via IRT (ports are created in the GSD, and the parameterization
data records are loaded to the controller of the iDevice on startup).
If you do not select this option, you can only operate communication between the higher-
level IO controller and the IO device of the iDevice via RT.

6. Select Operate I-Device/application in isochronous r if you want to operate
communication isochronously. The additional Application tab is then displayed in the
Properties dialog on the iDevice. If you have not selected this option, the iDevice will not
operate isochronously.

7. Click New each time to create the virtual subslots (I and O address) and configure these
according to requirements. You thus configure the IO area of the iDevice. Do not perform
any further settings in the Sender and Receiver tabs.

8. Click OK to accept these settings and save the project.
9. Continue with Creating a substitute iDevice (Page 173).

 PROFINET IO
 6.5 Configuring the iDevice

Communication
System Manual, 08/2008 173

Manually configuring the send clock/update time in the iDevice
● IO device in iDevice with IRT/IO controller using PROFINET with RT.

In this case, specify the send clock in the Properties <Profinet Interface> dialog box
under PROFINET. Possible times are 500, 1000, 2000 and 4000 µs. Also set this value
on the higher-level IO controller.

● IO device in iDevice with RT/IO controller using PROFINET using IRT.
In this case, specify the send clock in the Properties <Profinet Interface> dialog box
under PROFINET. You must then set the updating time on the higher-level IO controller
to be equal to or an integer multiple of this value.

 Note
You must ensure that the send clocks and update times on the iDevice and the higher-
level IO controller are the same, or that one is an integer multiple of the other (see
above).

6.5.3 Creating a substitute iDevice

Requirements
You have already configured the module to be used as iDevice.

Proceed as follows
1. First save the project.
2. Perform Options > Create GSD file for iDevice.

The Create GSD file dialog box will be displayed.
3. Select the iDevice and enter a name for the substitute iDevice.
4. Click on Export. The Save as dialog is displayed.
5. Select the path in which the GSD file of the substitute iDevice is to be created and click

Save.
6. Click Install to install the substitute iDevice.

The substitute iDevice is now present in the hardware catalog under PROFINET IO >
Preconfigured Stations and can be selected.

PROFINET IO
6.5 Configuring the iDevice

 Communication
174 System Manual, 08/2008

 PROFINET IO
 6.5 Configuring the iDevice

Communication
System Manual, 08/2008 175

6.5.4 Inserting an iDevice in the higher-level IO controller

Requirement
You have already created a substitute iDevice. The IO controller and the corresponding IO
system have already been configured.

Proceed as follows
1. Open the hardware catalog.
2. Drag the iDevice substitute from the hardware catalog (PROFINET IO > Preconfigured

Stations) to the IO system.
The substitute iDevice is displayed as a normal IO device. Depending on whether the
iDevice is controlled using RT or IRT, ports will (IRT iDevice) or will not (RT iDevice) be
displayed.

The following figure shows a higher-level IO controller with an RT iDevice.

Figure 6-21 RT iDevice on the IO controller

PROFINET IO
6.5 Configuring the iDevice

 Communication
176 System Manual, 08/2008

The following figure shows a higher-level IO controller with an IRT iDevice.

Figure 6-22 iDevice on the IO controller

The number of submodules corresponds to the number of the configured submodules of the
iDevice in the GSD file. The module and the submodules cannot be deleted.

 PROFINET IO
 6.5 Configuring the iDevice

Communication
System Manual, 08/2008 177

Interconnecting IRT iDevice ports
As with an IO device, you must interconnect the ports between the higher-level controller
and the iDevice for an IRT iDevice.
1. Select the iDevice and perform Edit > PROFINET IO > Topology.

The topology editor opens.
2. Interconnect the ports and click OK to accept these settings.

Figure 6-23 Interconnect iDevice ports

Assigning the IP address of the iDevice
1. Double-click the iDevice to display the Properties dialog.
2. Disable the Assign IP address via IO controller option.

The IP address should not be assigned by the higher-level IO controller because it
already assigns this in the Step7 project of the iDevice.
Exceptions exist, for example, if you cannot access the Step7 project of the iDevice.

PROFINET IO
6.5 Configuring the iDevice

 Communication
178 System Manual, 08/2008

Edit the synchronization and the application (iDevice and higher-level IO controller isochronous)
1. Double-click the interface entry (X1400) to display the Interface properties dialog.
2. In the Synchronization tab, select Sync-Slave and IRT as synchronization type and RT

class respectively.
Only then are the fields in the Application tab active.

3. Select the Operate IO-device/application isochronized option in the Application tab and
configure the application appropriately for your requirements.

 Note
Ti, To and CACF have no significance for iDevices and do not need to be entered.

Setting the update time and send clock on the IO controller
● IO device in the iDevice with RT (update time)

If the iDevice is operated in RT mode (the higher-level IO controller is the IRT), you must
set the update time in the higher-level project as equal to or as an integer multiple of the
update time of the iDevice in the lower-level project (iDevice project).
Double-click the PROFINET IO system and select the Update time tab in the PROFINET
subnet properties dialog box. Set the updating time there.

● IO device in the iDevice with IRT (send clock)
The send clock must be identical in both projects. You can set the send clock in the
higher-level project using Edit > PROFINET IO > Domain Management. Possible times
are 500, 1,000, 2,000 and 4,000 µs.

 PROFINET IO
 6.6 Loading the communication configuration

Communication
System Manual, 08/2008 179

 Note
You must ensure that the send clocks and update times on the iDevice and the higher-
level IO controller are the same, or that one is an integer multiple of the other (see
above).

6.6 Loading the communication configuration

6.6.1 Loading the PROFINET IO configuration

Requirement
A PG/PC with which you can go ONLINE is connected.

Proceed as follows
The configuration data must be loaded in all participating SIMOTION devices after the
successful configuration of PROFINET IO.
1. In NetPro, select the Ethernet subnet and then select the Target system > Loading in

current project > Nodes on the subnet menu command.

6.7 Data exchange between SIMATIC and SIMOTION via PROFINET

6.7.1 Data exchange through the use of iDevices

Description
With STEP7 5.4 SP2, the data exchange is also possible through the use of iDevices. You
can configure a SIMOTION controller as iDevice and use it in the sync domain of the
respective partner.
For further information on the configuration of iDevices, see PROFINET iDevice (Page 169)

PROFINET IO
6.7 Data exchange between SIMATIC and SIMOTION via PROFINET

 Communication
180 System Manual, 08/2008

6.7.2 PN-PN coupler

Description
The PN/PN coupler is used to link two PROFINET IO system with one another and to
exchange data between them. The maximum size of the data which can be transferred is
256-byte input data and 256-byte output data.
As a device, the PN/PN coupler has two PROFINET interfaces, each of which is linked to
another subnet.

 Note
The PN/PN coupler can only be implemented as a device with RT class RT.

During configuring, two IO devices are derived from a PN/PN coupler which means that
there is one IO device for each station with its own subnet. The other part of PN/PN coupler
in each case is known as the bus node. Once configuring is complete, the two parts are
joined.

Figure 6-24 Coupling two PROFINET subnets with one PN-PN coupler

 Note
Detailed information about the PN-PN coupler is contained in the appropriate device
documentation.

Configuring the PN-PN coupler
You use STEP 7 to configure the PN-PN coupler. Once both subnets in a project have been
configured, you can use STEP 7 to configure the PN-PN coupler for both subnets. Once the
subnets in various projects have been configured, you must configure the coupler in each
project.

 PROFINET IO
 6.7 Data exchange between SIMATIC and SIMOTION via PROFINET

Communication
System Manual, 08/2008 181

6.7.3 Communication using standard protocols

Description
Since the PROFINET interface supports standard Ethernet services (amongst other things),
you can exchange data on an individual basis with SIMATIC modules via TCP and UDP.
Your user program must handle the management of the communications connection. You
can use this connection, for example, to exchange data between a SIMATIC CPU and a
SIMOTION controller via PROFINET.
This includes:
● Establishing a connection
● Data management
● Connection monitoring
● Connection termination
The use of the system commands is described in detail in the Introduction to Ethernet
(TCP/IP and UDP connections) section.

See also
_tcpOpenServer function (Page 113)
_tcpOpenClient function (Page 113)
_tcpReceive function (Page 114)
_tcpSend function (Page 114)
_tcpCloseConnection function (Page 115)
_tcpCloseServer function (Page 115)

PROFINET IO
6.8 Diagnostic and alarm behavior

 Communication
182 System Manual, 08/2008

6.8 Diagnostic and alarm behavior

6.8.1 PROFINET IO alarm and diagnostic messages to SIMOTION

Description
For PROFINET IO there is an alarm and diagnostic functionality for PROFINET devices.

...

Figure 6-25 Diagnostics overview

Device diagnostics
The device diagnosis can be divided into three levels. For detailed information, see
"Diagnostic model".

 PROFINET IO
 6.8 Diagnostic and alarm behavior

Communication
System Manual, 08/2008 183

6.8.2 Diagnostics model
With PROFIBUS DP, a diagnostics message frame is transferred to the master for diagnostic
and status messages of a slave. A diagnostics message frame contains the entire diagnostic
status of a slave. Only the representation of parameterization and configuration errors is
standardized in a DP diagnostics message frame. Further diagnostic and status messages
can be added, but these are coded manufacturer-specific.
Right from the start, PROFINET IO uses completely standardized diagnostics mechanisms.
This is especially helpful for manufacturer-wide device and system diagnostics.
Because of the large quantity structures, it is not possible to keep the status information of all
stations in the IO controller. Therefore only the current diagnostic events are transferred to
the IO controller via the standardized alarms.
The use of an acknowledged service enables the transfer of the diagnostic events in causal
sequence. The status of a station is saved by this and can be read out by a diagnostic
system at any time and directly via standardized data records, see corresponding STEP7
documentation.

Access to the alarm and diagnostic data
For PROFINET IO, a differentiation is made between the following alarm and diagnostic
messages:
● Alarms sent from IO devices to the IO controller
● Alarms that occur in the IO controller
The following figure shows the access possibilities to the diagnostic data:
1. Diagnostics on PG

The PG reads the diagnostics directly from the IO device. Visualization takes place in the
PG.

2. Diagnostics on controller
The IO device sends the diagnostics to the IO controller, the response to the fault takes
place in the controller.

PROFINET IO
6.8 Diagnostic and alarm behavior

 Communication
184 System Manual, 08/2008

1

2

Figure 6-26 Access to the diagnostic data

 PROFINET IO
 6.8 Diagnostic and alarm behavior

Communication
System Manual, 08/2008 185

6.8.3 Alarms on the IO controller

Description
A number of alarms are issued on the IO controller. Occurring alarms are listed with the
corresponding EventID in the diagnostics buffer of SIMOTION. The following alarms are
possible:
● Alarms for direct data exchange between IO controllers
● Station alarms reported by the PROFINET interface

The following table shows PROFINET IO alarms as they are represented in SIMOTION:

Alarm (TSI#InterruptId) TSI#eventCl

ass
TSI#faultId Meaning

16#CA PROFINET IO system error: in this case there is only
an incoming event; an outgoing event is represented
on 16#38 - 16#CB for each IO device present.

16#CB Station failure of an IO device

Station failure
(_SC_STATION_DISCONNECTED
(= 202))

16#39

16#CC IO device fault present.
Channel diagnostics or manufacturer-specific
diagnostics pending.

16#CB An IO device has been reconnected without errors
16#CC IO device error corrected
16#CD An IO device has been reconnected, but with an

error: set configuration <> actual configuration

Station reconnection
(_SC_STATION_RECONNECTED
(= 203)

16#38

16#CE An IO device has been reconnected, but error during
module parameterization

Use of the TaskStartInfo
Information concerning the TaskStartInfo for the PeripheralFaultTask is contained in the
Base Functions manual.

PROFINET IO
6.8 Diagnostic and alarm behavior

 Communication
186 System Manual, 08/2008

6.8.4 Alarms from the IO device to the IO controller

Description
The alarms are transferred using the PROFINET alarm mechanism from the IO device to its
associated IO controller. The alarms are entered in the diagnostic buffer and can be
evaluated using the PeripheralFaultTask. The following table shows how alarms are
represented as PeripheralFaultTask.

Alarm (TSI#InterruptId) TSI#event

Class
TSI#faultId Meaning

16#39 16#42 Incoming diagnostic interrupt Diagnosis (incoming)
Diagnosis disappears (outgoing)
Multicast Communication Mismatch
Port Data Change Notification
Sync Data Changed Notification
Isochronous Mode Problem Notification
Network component problem notification
 (_SC_DIAGNOSTIC_INTERRUPT (=201))

16#38 16#42 Outgoing diagnostic interrupt

Process interrupt (_SC_PROCESS_INTERRUPT
(= 200)

16#11 16#41 Process interrupt

16#51 PROFINET IO module has been
removed or cannot be addressed.

16#39

16#54 PROFINET IO submodule has been
removed or cannot be addressed.

16#54 PROFINET IO module or submodule
has been inserted, module type OK
(actual configuration = set configuration)

16#55 PROFINET IO module or submodule
has been inserted, but wrong module
type (actual configuration <> set
configuration)

16#56 PROFINET IO module or submodule
has been inserted, but error during
module parameterization

Pull Alarm
Plug Alarm
Plug Wrong Submodule Alarm
Return of Submodule Alarm
(_SC_PULL_PLUG_INTERRUPT (=216))

16#38

16#58 IO status of a module has changed from
BAD to GOOD

State Not Supported
Update Not supported
Time data changed notification Not supported
Upload and storage notification Not supported
Pull module Not supported
Manufacturer-specific Not supported
Profile-specific Not Supported

Alarm types indicated as "not supported" are acknowledged by the SIMOTION controller with
"not supported" and not entered in the diagnostic buffer.

 PROFINET IO
 6.8 Diagnostic and alarm behavior

Communication
System Manual, 08/2008 187

Use of the TaskStartInfo
Information concerning the TaskStartInfo for the PeripheralFaultTask is contained in the
Base Functions manual.

Transfer diagnostic data
The exact reason for the alarm is provided as diagnostic data. The _readDiagnosticData
function can be used to fetch this data. The length is restricted to 255 bytes.

6.8.5 Alarms for direct data exchange between IO controllers

Description
For PROFINET IO with IRT, communication monitoring takes place between IO controllers. If
this establishes that IRT data is no longer being received (either there is no data arriving, or
it is arriving too late) a station failure alarm is generated. If communication is re-established,
a station reconnection alarm is generated. If IRT data arrives late on three occasions, a
station failure alarm is reported.
The following table shows PROFINET IO alarms between IO controllers involved in direct
data exchange as they are represented in SIMOTION:

Alarm (TSI#InterruptId) TSI#eventCl

ass
TSI#faultId Meaning

Station failure
(_SC_STATION_DISCONNECTED
(= 202))

16#39 16#F3 The receiver in the direct data exchange is no longer
receiving data.

16#F0 The transmitter in the direct data exchange has
started up and is able to transmit.

16#F1 The receiver in the direct data exchange has started
up and is receiving without errors, or the receiver is
receiving data again (all receiving areas are
available).

Station reconnection
(_SC_STATION_RECONNECTED
(= 203)

16#38

16#F2 The receiver in the direct data exchange has started
up and is receiving with errors, or the receiver is
receiving data again (at least one receiving area not
available).

PROFINET IO
6.8 Diagnostic and alarm behavior

 Communication
188 System Manual, 08/2008

6.8.6 Alarms for SINAMICS S120 drives

Description
Alarms initiated by the SINAMICS S120 CU320/CBE20 or SINAMICS S120 CU310 PN are
issued using the PROFINET alarm channel. Two types are possible for alarms:
● Alarms issued by the PROFINET interface that directly concern PROFINET.
● Alarms issued by the application/technology in the drive.

PROFINET alarms
The following alarms are supported via the SINAMICS module that can be used with
PROFINET:

Alarm Description
Port data change notification
Sync Data Changed Notification
Isochronous mode problem notification
Multicast Communication Mismatch

A detailed description can be found under Alarms on the IO
controller (Page 185)

Technology/application alarms
Not yet sent to the controller as standard PROFINET alarms

 PROFINET IO
 6.8 Diagnostic and alarm behavior

Communication
System Manual, 08/2008 189

6.8.7 System functions for the diagnostics for PROFINET or PROFIBUS

Overview of system and diagnostics functions
The following table provides an overview of the various system and diagnostics functions for
PROFINET IO. Differences with PROFIBUS DP are also indicated. You will find detailed
information on the respective functions in the reference lists of the SIMOTION controller.

Function Note PROFIBUS PROFINET
_getStateOfSingleDpSlave This function returns the

status data of a single DP
slave / IO device:

Logical diagnostic address of
DP slave

Logical diagnostic address of
the station substitute of the
IO device

_getStateOfAllDPStations This function returns the
status data of all DP slaves /
IO devices:

Logical diagnostic address of
DP slave

Logical diagnostic address of
the station substitute of the
IO device

_activateDpSlave
_deactivateDpSlave
_getStateOfDpSlave

_getStateOfDpSlave
supplies information on
whether the slave is
activated or deactivated.

Logical diagnostic address
DP slave

Logical diagnostic address of
the station substitute of the
IO device

_readDiagnosticData
_getStateOfDiagnosticDataC
ommand

This function is used to
output diagnostic data for a
DP slave via the user
program. The diagnostic
data is read in the form
specified by EN 50170,
Volume 2, PROFIBUS.
Structure of data for
PROFINET is not identical to
PROFIBUS. The diagnostics
are specific to a subslot

Logical diagnostic address
DP slave

Logical diagnostic address of
IO address of subslot

_readDriveFaults This function is used to read
the current fault buffer entry
in the drive.

Logical start address of drive
(slot).

Each valid logical I/O
address of the subslot
concerned or diagnostic
address of the PAP (for
subslots without user data)

PROFINET IO
6.8 Diagnostic and alarm behavior

 Communication
190 System Manual, 08/2008

6.8.8 PROFINET device diagnosis in STEP 7

Device diagnosis in STEP 7
In SCOUT, HW Config can be used to perform an online device diagnosis via PROFINET.
The diagnosis supplies not only the slot and the channel number, but also the error type. The
diagnosis operates similar to that for PROFIBUS.

Proceed as follows
1. Go online and open the HW Config for the appropriate SIMOTION device.
2. Select Target system > Diagnose, monitor/control Ethernet node.

HW Config searches for all network nodes. The (Diagnosis) ONLINE window opens and
displays the network nodes.

3. Right-click the required node and select Properties. The detailed diagnosis is displayed.
The associated fault is displayed here.

Communication
System Manual, 08/2008 191

Routing - communication across network boundaries 7
7.1 What does routing mean?

Routing is the transfer of information from Network x to Network y.
There is a fundamental difference between intelligent, self-learning routing (e.g. IP routing in
the Internet) and routing according to previously specified routing tables (e.g. S7 routing).

IP routing
IP routing is a self-learning routing procedure (which can also be performed manually), used
exclusively in Ethernet communication networks which operate with the IP protocol, such as
the Internet.
The function is performed by special routers that pass on the information to adjacent
networks based on the IP address, when the IP address is not detected in the own network.

S7 routing
S7 routing is a routing procedure based on previously configured routing tables, but which
can also exchange information between different communication networks, e.g. between
Ethernet, PROFIBUS and MPI. These routing tables can be created as interconnection
tables in NetPro.
S7 routing does not work with the IP address, but with what are known as subnet IDs within
the S7 protocol.
● Information transfer from Ethernet to MPI and vice versa
● Information transfer from Ethernet to PROFIBUS and vice versa
● Information transfer from MPI to PROFIBUS and vice versa
● Information transfer from Ethernet to Ethernet (only SIMOTION, including PROFINET)

PG / PC assignment
Modification of the PG assignment may be required for S7 routing. You can do this now in
the toolbar in SIMOTION SCOUT above the Assign PG button. This calls the properties
window for PG assignment, where you modify the assignment and "activate" it (S7ONLINE
access).

Routing - communication across network boundaries
7.2 Configuration of S7 routing

 Communication
192 System Manual, 08/2008

7.2 Configuration of S7 routing
S7 routing is configured in STEP 7 / SIMOTION SCOUT with the aid of the "NetPro" network
configuration.
All stations contained in the network configuration can exchange information between one
another. Connection tables must be created in NetPro for this purpose. The required routing
tables are automatically generated during the compilation of the project, but must then be
loaded to all the participating stations.

7.3 Routing for SIMOTION
Routing makes it possible, for example, to access devices connected to subnets ONLINE via
a PG/PC.

IP routing
IP routing is fundamentally NOT supported by SIMOTION even when there are several
Ethernet interfaces on some SIMOTION devices, such as SIMOTION D4xx.
If you want to connect different Ethernet networks with one another, please set a separate
router for the IP routing.

S7 routing
S7 routing is supported by SIMOTION, i.e. information can be routed by a SIMOTION device
from higher-level networks such as Ethernet and MPI to lower-level networks such as
PROFIBUS or PROFINET/Ethernet (from 4.1.2 or higher).

Supplementary conditions
The following supplementary conditions must be taken into account in the "DP slave" mode
when routing information on an isochronously operated PROFIBUS.
The functions "Equidistant bus cycle" (requirement for isochronous applications) and "Active
station" (requirement for routing to a lower-level network segment) mutually exclude each
other.

 Routing - communication across network boundaries
 7.3 Routing for SIMOTION

Communication
System Manual, 08/2008 193

Figure 7-1 DP slave mode: Active station: Testing, commissioning, routing

The "Programming, status/modify or other PG functions …" checkbox must be activated if,
for example, you frequently want to perform PG functions required for commissioning and
testing via this interface, or if you want to access (S7 route) SINAMICS drives on the
cascaded, lower-level DP master interface of the SIMOTION with PG functions (e.g. Starter).
If the "Programming, status/modify or other PG functions..." option is activated, the interface
becomes the active node on the PROFIBUS (i.e. the interface participates in the token
rotation of the routing PROFIBUS). The following functions are then possible:
● Programming (e.g. loading)
● Test (status/control)
● S7 routing (I-slave as gateway)
The bus cycle time can be prolonged. Therefore, this option should not be activated for time-
critical applications and when S7 routing and the client functionality are not required for the
communication.

 Note
When the "Programming, status/control or other PG functions …" checkbox is not activated,
the server only operates as server for communication services, i.e. S7 routing is not
possible.

Routing - communication across network boundaries
7.4 Routing for SIMOTION D with inserted PROFINET CBE30 board

 Communication
194 System Manual, 08/2008

7.4 Routing for SIMOTION D with inserted PROFINET CBE30 board

Routing between the different interfaces
The two standard Ethernet interfaces X120 and X130 of the SIMOTION D each form a
separate subnet, all ports on the CBE30 also form a common subnet.
● Routing from subnet to subnet (IP routing) is not supported. You can use an external IP

router for this
● The S7 routing from a PROFINET/Ethernet subnet to a PROFIBUS is possible.
There are three options for connecting a PG/PC or HMI via S7 routing to a SIMOTION D with
CBE30.

Engineering system to PROFINET (CBE30)

Figure 7-2 Example for PG/PC to CBE30

● S7 routing to the (master) PROFIBUS interfaces (only if configured)
● S7 routing to the standard Ethernet interfaces ET1/ET2 (X120, X130) (V.4.1.2 and

higher)
● Access to the components on the same subnet (CBE30) via the switch functionality

 Routing - communication across network boundaries
 7.4 Routing for SIMOTION D with inserted PROFINET CBE30 board

Communication
System Manual, 08/2008 195

Engineering system / HMI to PROFIBUS

Figure 7-3 Example for PG/PC to PROFIBUS

● S7 routing to the other (master) PROFIBUS interfaces (only if configured)
● S7 routing to PROFIBUS Integrated
● S7 routing to X1400 on the CBE30
● S7 routing to the standard Ethernet interfaces (X120, X130) (V.4.1.2 and higher)

Routing - communication across network boundaries
7.5 Routing for SIMOTION D to the SINAMICS integrated

 Communication
196 System Manual, 08/2008

Engineering system / HMI to Ethernet

Figure 7-4 Example for PG/PC to Ethernet X120, X130

● S7 routing to the other (master) PROFIBUS interfaces (only if configured)
No S7 routing to X1400 on the CBE30

7.5 Routing for SIMOTION D to the SINAMICS integrated

S7 routing to the internal PROFIBUS on SINAMICS Integrated
All SIMOTION D have an integrated SINAMICS drive control. In order to be able to access
drive parameters, the message frames must be routed from the external SIMOTION D
interfaces to the internal PROFIBUS DP. S7 routing can be used to access the integrated
PROFIBUS. Here, the internal PROFIBUS DP forms a separate subnet. This must be
especially taken into account for the communication to several routing nodes.

 Routing - communication across network boundaries
 7.6 Routing for SIMOTION P350

Communication
System Manual, 08/2008 197

7.6 Routing for SIMOTION P350

Description
S7 routing is possible:
● From PROFIBUS (ISO board) on PROFINET subnet to MCI-PN board
● From PROFINET subnet to MCI-PN board on PROFIBUS (ISO PROFIBUS board)
● From SCOUT on SIMOTION P via softbus through the runtime on PN devices on the

MCI-PN board
Routing is not possible from onboard Ethernet interfaces on PROFIBUS (ISO PROFIBUS
board). IP routing is not possible via the Ethernet interfaces of the P350.

Routing from PROFIBUS to PROFINET

Figure 7-5 Example for P350 routing from PROFIBUS to PROFINET

Routing - communication across network boundaries
7.6 Routing for SIMOTION P350

 Communication
198 System Manual, 08/2008

Routing from PROFINET on PROFIBUS

Figure 7-6 Example for P350 routing from PROFINET to PROFIBUS

Communication
System Manual, 08/2008 199

SIMOTION IT 8
8.1 SIMOTION IT - overview

Description
SIMOTION IT allows you to use standard Internet mechanisms (HTTP) to access SIMOTION
via Ethernet and so perform diagnosis and process monitoring.
This provides the following advantages.
● Location-independent open diagnosis / process monitoring
● Use of standard mechanisms (IP, TCP/IP, HTTP)
● Client device independent of the operating system (Windows, Linux, ...)
● Independent of manufacturer-specific tool
● Decoupled from the engineering
● No version conflict between client tool and runtime
● Series commissioning without engineering tool

Figure 8-1 SIMOTION IT overview

SIMOTION IT
8.1 SIMOTION IT - overview

 Communication
200 System Manual, 08/2008

SIMOTION provides various services:
● SIMOTION IT DIAG
● SIMOTION IT OPC XML DA
● Access to TRACE (extension of SIMOTION OPC XML - DA)
● File download using FTP (File Transfer Protocol)

Further references
A detailed description of the SIMOTION IT products is contained in the SIMOTION IT
Ethernet-based HMI and Diagnostic Functions Product Information on the SIMOTION
SCOUT Documentation CD.

See also
Web access to SIMOTION (Page 201)
SIMOTION IT DIAG (Page 202)
SIMOTION IT OPC XML DA (Page 205)

 SIMOTION IT
 8.2 Web access to SIMOTION

Communication
System Manual, 08/2008 201

8.2 Web access to SIMOTION

Description
The following figure shows the various possibilities to access the data in a SIMOTION
module.

Figure 8-2 Access to SIMOTION

See also
SIMOTION IT DIAG (Page 202)
SIMOTION IT OPC XML DA (Page 205)

SIMOTION IT
8.3 SIMOTION IT DIAG

 Communication
202 System Manual, 08/2008

8.3 SIMOTION IT DIAG

Description
SIMOTION IT DIAG allows a PC to use any Internet browser to access the HTML pages in
SIMOTION.
A separate license is required for SIMOTION IT DIAG.

Standard diagnostic pages
SIMOTION provides the following standard diagnostic pages:
● Start page
● Device Info (information about the firmware, devices, device components and technology

objects)
● Diagnostics (CPU loading, memory use, operating status, task run time display)
● Diagnostic buffer (messages from the diagnostic buffer are displayed)
● IP-Config (data of the SIMOTION device interface)
● Settings (firmware upload, project upload, project download, configuration upload, set the

time zone, alter operating states)
● File structure (access to the SIMOTION file system, upload and download of files, create

folders and store additional data, e.g. documentation)
● Access protection (access to the diagnostic pages can be restricted by the assignment of

user identification and password)
● HTTPS - access using encrypted communication (encrypted messages)

 SIMOTION IT
 8.3 SIMOTION IT DIAG

Communication
System Manual, 08/2008 203

User-defined pages
You can create HTML pages yourself and so display SIMOTION variable values. The access
to the SIMOTION system variable is realized using a special syntax in HTML code, so-called
Server Side Includes. The following figure shows an example access to a user-defined page:

1

4

3 2

Figure 8-3 User-defined HTML pages

The "User’s Area" of the standard diagnostics pages is reserved for user-defined HTML
pages. In this area you can store user-defined HTML pages in the SIMOTION CPU using the
flash file system.

HTML code examples
The examples show how you can use HTML code to access variables and display figures.

Table 8-1 Read variable

<td>unit/Bedienen.controller_on</td>
<td align="right">
 <%= unit/Bedienen.controller_on %>
</td>

SIMOTION IT
8.3 SIMOTION IT DIAG

 Communication
204 System Manual, 08/2008

Table 8-2 Write variable

<form method="post" action="/VarApp">
 <td>
 <input type="hidden" value="TRUE" name="unit/Bedienen.start_prog"/>
 <input type="submit" value="Start" />
 </td>
</form>

Table 8-3 Simple graphic

<script language="JavaScript">
<!--
 if ('<%=unit/Bedienen.controller_on%>' == 'true'){
 document.writeln('<td style="background-color:#00FF00; font-size:1px;
width:12; height:12; border-style:solid; border-color:black; border-
width:1px"> </td>');
 }
 else {
 document.writeln('<td style="background-color:#FF0000; font-size:1px;
width:12; height:12; border-style:solid; border-color:black; border-
width:1px"> </td>');
 }
//-->
</script>

Access to variables
The variable access for the SIMOTION IT applications is implemented using a variable
provider. This makes it possible to access the following variables:
● Device system variables
● TO system variables
● Program interface variables
● Configuration data
● Drive parameters
● Setting of the operating state, execute RamToRom, execute ActiveToRom
● Technological Alarms
● Diagnostics buffer

 SIMOTION IT
 8.4 SIMOTION IT OPC XML DA

Communication
System Manual, 08/2008 205

8.4 SIMOTION IT OPC XML DA

Description
A customer-specific application created on a client PC, which, for example, is programmed
with the C#, Visual Basic or Java programming language, uses the SIMOTION IT OPC XML-
DA services and properties:
A separate license is required for SIMOTION IT OPC XML-DA.
● Open communication using HTTP, SOAP, OPC-XML (Ethernet) between client device

and SIMOTION (Web services, Remote Procedure Call)
● Uses the OPC XML DA 1.0 specification of the OPC Foundation
● Access to SIMOTION process variable

– Read and write variables
– Cyclical reading of variables using subscriptions
– Browse variables

● Trace interface using SOAP; this function is an extension of the OPC specification
● Clients on any hardware with various operating systems (Windows, Linux, etc.)
● Creating client applications using C#, Java, C++. You must implement yourself the

application that you want to access on the SIMOTION OPC server.
● Access protection with user ID and password
The following figure shows schematically the access to the OPC server

Figure 8-4 Access to the OPC server

SIMOTION IT
8.4 SIMOTION IT OPC XML DA

 Communication
206 System Manual, 08/2008

C# code example

Table 8-4 Establishing a connection

OpcXmlDa_R1_0.Service MyServer = new OpcXmlDa_R1_0.Service();
MyServer.Url = "http://" + this.ServerAddress.Text + "/soap/opcxml";

Table 8-5 Write variable

WriteServer.Write(RequestOptions,WriteItemList,true, out RItemList,out
WriteErrorList);

Table 8-6 Subscription

OpcXmlDa_R1_0.ReplyBase Result = SubscribeServer.Subscribe(RequestOptions,
SubscribeItemList, false, 0, out SubscribeReplyItemList, out
SubscribeErrorList, out ServerSubHandle);
SubscribeServer.SubscriptionPolledRefresh(RequestOptions,
ServerSubHandleList,
Result.ReplyTime.AddMilliseconds(System.Double.Parse("100")),true,
System.Int32.Parse("10000"), false, out InvalidServerSubHandles, out
SubscribePolledRefreshReplyItemListArray, out SubscribeErrorList, out
DataBufferOverflow);

Access to variables
The variable access for the SIMOTION IT applications is implemented using a variable
provider. This makes it possible to access the following variables:
● Device system variables
● TO system variables
● Program interface variables
● Configuration data
● Drive parameters
● Setting of the operating state, execute RamToRom, execute ActiveToRom
● Technological Alarms
● Diagnostics buffer

http:///

 SIMOTION IT
 8.5 FTP data transfer

Communication
System Manual, 08/2008 207

8.5 FTP data transfer

File access using FTP
You can access specific data of the SIMOTION memory cards. For this purpose, you can
access the FTP server integrated in SIMOTION. You must create the users and the
associated passwords on the FTP server. FTP is protected through access protection.
You can use FTP, for example, to perform firmware updates or load user defined HTML
pages.
The FTP service does not require its own license.

Communication
System Manual, 08/2008 209

Index

_
_readRecord

Application, 45
_tcpCloseConnection, 115
_tcpCloseServer, 115
_tcpOpenClient, 113
_tcpOpenServer, 113
_tcpReceive, 110, 114
_tcpSend, 114
_writeRecord

Application, 45
_xreceive, 78
_xsend, 76

C
Communication

Between SIMOTION and SIMATIC, 67
SIMATIC as DP slave, 71
SIMATIC as iSlave, 72
SIMOTION as DP slave, 68
SIMOTION as i-slave, 69

Configuring the sender, 167
Connection configuration

Ethernet, 87
Constant bus cycle time, 127
Controller Application Cycle Factor, 135
Cycle clock scaling, 135

D
Data set 47, 37
Diagnostics model, 183
DP slave

SIMOTION, 68
DP V1 communication, 34

Program example, 64

E
Ethernet

Properties of the subnets, 79
Ethernet communication

Configuring a connection, 87
Modeling, 80
SIMATIC S7 functions, 84
SIMATIC with integrated interface, 94
TCP/IP connection, 89
UDP connection, 92
Use of _tcpReceive, 110

F
FTP file transfer, 207

I
iDevice

Configuring, 169
Insert PROFINET board, 143
IRT (High Flexibility), 128
IRT High Performance, 129
iSlave

SIMATIC, 72
i-Slave

SIMOTION, 69
Isochronous mode, 127

N
Network topology, 130

P
PN-PN coupler, 180
PROFIBUS

Acyclic communication, 34
Cyclic services, 33
DPV1 communication, 34

PROFIBUS master-master
S7 system functions, 75
SIMOTION functions, 76

PROFIdrive
Application classes, 26

Index

 Communication
210 System Manual, 08/2008

Profile, 25
PROFINET IO

IO controller, 120
IO device, 121
IRT (High Flexibility), 128
Network topology, 130
RT, 126
SIMATIC - SIMOTION data exchange, 181

R
Recipients

configuring, 168
References, 4
Refresh time, 156
Routing

For SIMOTION, 192
S7 routing, 192

S
Send clock, 156
SIMATIC S7-300

Features of the Ethernet communication, 84
SIMATIC S7-400

Features of the Ethernet communication, 85
SIMOTION IT

Access to variables, 204, 206
IT-DIAG, 202
OPC XML DA, 205

SP slave
SIMATIC, 71

Sync domain, 121
creating, 149

Sync master, 127
Redundant, 138

Sync slave, 127

T
TCP/IP communication

SIMOTION functions, 100
TCP/IP connection, 89

SIMATIC S7 function blocks, 105
SIMATIC S7 functions, 99
SIMOTION functions, 110

Topology
Configuring, 151

U
UDP connection, 92

SIMATIC S7 functions, 104
SIMOTION functions, 104

X
X_RCV, 75
X_SEND, 75

SIMOTION SIMOTION SCOUT Communication
System Manual, 08/2008 211

	1 Introduction
	1.1 The communications subject in the SIMOTION documentation

	2 Overview of the communication functions and services
	2.1 Network options
	2.1.1 Introduction
	2.1.2 PROFINET
	2.1.3 Industrial Ethernet
	2.1.4 PROFIBUS
	2.1.5 MPI (Multi-Point Interface)
	2.1.6 Point-to-point communication (PtP)

	2.2 Communications services (or network functions)
	2.2.1 Introduction
	2.2.2 PG/OP communication services
	2.2.3 S7 communication services
	2.2.4 S7 basic communication services
	2.2.5 "Global data" communication service
	2.2.6 PROFINET communication services
	2.2.7 Industrial Ethernet communication services
	2.2.8 PROFIBUS communication services

	2.3 Additional services for the exchange of information

	3 PROFIdrive
	3.1 Introduction
	3.2 Why profiles?
	3.3 Segmentation in application classes
	3.4 PROFIdrive-specific data types

	4 PROFIBUS
	4.1 Cyclic communication
	4.1.1 Cyclic communication (overview)

	4.2 DP V1 acyclic communication
	4.2.1 Acyclic communication to slaves
	4.2.2 Reading and writing data with DP V1
	4.2.3 Data set 47
	4.2.4 Error assessment
	4.2.5 Additional information for the parameters of a PROFIdrive drive
	4.2.6 Structure of a read/write request
	4.2.7 System commands in SIMOTION
	4.2.7.1 _writeRecord/_readRecord SIMOTION system commands
	4.2.7.2 _writeDrive.../_readDrive... SIMOTION system commands
	4.2.7.3 Comparison of the system commands
	4.2.7.4 Deleting _readDrive and _writeDrive jobs

	4.2.8 Rules for using _readRecord and _writeRecord
	4.2.8.1 Rule 1 - the job has its own job reference
	4.2.8.2 Rule 2 - system functions for asynchronous programming
	4.2.8.3 Rule 3 - read/write data record per PROFIDrive drive device
	4.2.8.4 Rule 4 - the last call wins for SIMOTION
	4.2.8.5 Rule 5 - a maximum of eight concurrent calls is possible in SIMOTION

	4.2.9 Rules for SIMOTION _writeDrive.../_readDrive... commands
	4.2.9.1 Scope for the rules
	4.2.9.2 Rule 6 - repeated call of system function for asynchronous programming
	4.2.9.3 Rule 7 - multiple concurrent calls per target device
	4.2.9.4 Rule 8 - release the interlocking after the complete processing of a job
	4.2.9.5 Rule 9 - canceling jobs for an asynchronous call
	4.2.9.6 Rule 10 - management of sixteen jobs
	4.2.9.7 Rule 11 - parallel jobs for different drive devices

	4.2.10 Special features
	4.2.10.1 Rule 12 - data buffering of up to 64 drive objects
	4.2.10.2 Rule 13 - a mix of system functions can be used
	4.2.10.3 Rule 14 - interlocking for the mixed use of commands

	4.2.11 Program examples
	4.2.11.1 Programming example

	4.3 Communication with SIMATIC S7
	4.3.1 Possible communication connections between SIMOTION and SIMATIC
	4.3.2 SIMOTION as DP slave on a SIMATIC S7
	4.3.2.1 Introduction
	4.3.2.2 Connecting SIMOTION as DP slave with the aid of a GSD file to a SIMATIC S7
	4.3.2.3 Connecting SIMOTION as i-slave to a SIMATIC S7

	4.3.3 SIMATIC S7 as DP slave on a SIMOTION
	4.3.3.1 Introduction
	4.3.3.2 Connecting SIMATIC as DP slave with the aid of a GSD file to a SIMOTION device
	4.3.3.3 Connecting SIMATIC S7 CPU as i-slave to a SIMOTION device

	4.3.4 PROFIBUS master-master connection between SIMATIC and SIMOTION
	4.3.4.1 Introduction
	4.3.4.2 SIMATIC S7 system functions for a PROFIBUS connection

	5 Ethernet introduction (TCP/IP and UDP connections)
	5.1 Introduction
	5.2 Configuring Ethernet subnets with SIMOTION
	5.2.1 Features of the Ethernet subnets

	5.3 Function overview and functional sequence of Ethernet communication via TCP/IP or UDP
	5.3.1 Introduction
	5.3.2 SIMOTION TCP/IP functions - modeling
	5.3.3 SIMOTION TCP/IP functions - description
	5.3.4 SIMOTION UDP functions - modeling
	5.3.5 SIMATIC functions
	5.3.6 General information

	5.4 Preparations for the configuration of the connection between SIMOTION and SIMATIC S7
	5.5 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device
	5.5.1 Configuring a communication connection between a SIMATIC with Ethernet CP and a SIMOTION device
	5.5.2 TCP/IP connection
	5.5.3 UDP connection

	5.6 Creating a communication connection between a SIMATIC CPU with integrated Ethernet interface and a SIMOTION device
	5.7 Using the functions and function blocks in the user program
	5.7.1 Configuration flowchart and general information
	5.7.2 S7 and SIMOTION functions for a TCP/IP connection when using an S7 station with Ethernet CP
	5.7.2.1 Introduction
	5.7.2.2 S7 functions
	5.7.2.3 SIMOTION functions

	5.7.3 S7 and SIMOTION functions for a UDP connection when using an S7 station with Ethernet CP
	5.7.3.1 Introduction
	5.7.3.2 S7 functions
	5.7.3.3 SIMOTION functions

	5.7.4 S7 function blocks and SIMOTION functions for a TCP/IP connection when using an S7 station with integrated Ethernet interface
	5.7.4.1 Introduction
	5.7.4.2 S7 function blocks
	5.7.4.3 SIMOTION functions

	5.7.5 Processing of TCP/IP data packets in the SIMOTION user program

	5.8 Details of the SIMOTION TCP/IP system functions
	5.8.1 _tcpOpenServer function
	5.8.2 _tcpOpenClient function
	5.8.3 _tcpReceive function
	5.8.4 _tcpSend function
	5.8.5 _tcpCloseConnection function
	5.8.6 _tcpCloseServer function

	5.9 Details of the SIMOTION UDP system functions
	5.9.1 Function _udpSend
	5.9.2 Function _udpReceive

	6 PROFINET IO
	6.1 PROFINET IO overview
	6.1.1 PROFINET IO
	6.1.2 Application model
	6.1.3 IO controller
	6.1.4 IO device
	6.1.5 Sync domain
	6.1.6 iDevice
	6.1.7 Addressing of PROFINET IO devices
	6.1.8 RT classes
	6.1.8.1 RT classes for PROFINET IO
	6.1.8.2 PROFINET IO with RT
	6.1.8.3 PROFINET IO with IRT - Overview
	6.1.8.4 PROFINET IO with IRT (High Flexibility)
	6.1.8.5 PROFINET IO with IRT (High Performance)

	6.1.9 Topology
	6.1.10 Isochronous applications with PROFINET
	6.1.11 Cycle clock scaling
	6.1.11.1 Cycle clock scaling with PROFINET IO on SIMOTION devices
	6.1.11.2 Cycle clock scaling for IO accesses
	6.1.11.3 Bus cycle clocks that can be adjusted for cycle clock scaling to SIMOTION devices

	6.1.12 Connection between sync domain and IO systems
	6.1.13 Redundant sync master
	6.1.14 Quantity structures
	6.1.15 Acyclic communication via PROFINET

	6.2 Specific properties of PROFINET IO with SIMOTION
	6.2.1 Introduction

	6.3 Configuring PROFINET IO with SIMOTION
	6.3.1 New to SIMOTION V4.1.2
	6.3.2 Proceed as follows for configuring PROFINET IO
	6.3.3 Adding and configuring a CBE30-PROFINET board
	6.3.4 Inserting and configuring P350
	6.3.5 Inserting and configuring the C240
	6.3.6 Creating a sync domain
	6.3.7 Configuring a topology
	6.3.7.1 Topology
	6.3.7.2 Interconnecting ports via the topology editor
	6.3.7.3 Interconnecting ports via object properties
	6.3.7.4 Topology editor (graphical view)

	6.3.8 Defining send clock and refresh times
	6.3.9 Creating an IO device
	6.3.10 Inserting and configuring the SINAMICS S120
	6.3.11 Assigning device names and IP addresses to IO devices

	6.4 Configuring direct data exchange between IO controllers
	6.4.1 Introduction
	6.4.2 Configuring the sender
	6.4.3 Configuring the receiver

	6.5 Configuring the iDevice
	6.5.1 PROFINET iDevice
	6.5.2 Configuring a PROFINET iDevice
	6.5.3 Creating a substitute iDevice
	6.5.4 Inserting an iDevice in the higher-level IO controller

	6.6 Loading the communication configuration
	6.6.1 Loading the PROFINET IO configuration

	6.7 Data exchange between SIMATIC and SIMOTION via PROFINET
	6.7.1 Data exchange through the use of iDevices
	6.7.2 PN-PN coupler
	6.7.3 Communication using standard protocols

	6.8 Diagnostic and alarm behavior
	6.8.1 PROFINET IO alarm and diagnostic messages to SIMOTION
	6.8.2 Diagnostics model
	6.8.3 Alarms on the IO controller
	6.8.4 Alarms from the IO device to the IO controller
	6.8.5 Alarms for direct data exchange between IO controllers
	6.8.6 Alarms for SINAMICS S120 drives
	6.8.7 System functions for the diagnostics for PROFINET or PROFIBUS
	6.8.8 PROFINET device diagnosis in STEP 7

	7 Routing - communication across network boundaries
	7.1 What does routing mean?
	7.2 Configuration of S7 routing
	7.3 Routing for SIMOTION
	7.4 Routing for SIMOTION D with inserted PROFINET CBE30 board
	7.5 Routing for SIMOTION D to the SINAMICS integrated
	7.6 Routing for SIMOTION P350

	8 SIMOTION IT
	8.1 SIMOTION IT - overview
	8.2 Web access to SIMOTION
	8.3 SIMOTION IT DIAG
	8.4 SIMOTION IT OPC XML DA
	8.5 FTP data transfer

	Index
	_
	C
	D
	E
	F
	I
	N
	P
	R
	S
	T
	U
	X

